Right-angled Artin groups and curve graphs of nonorientable surfaces

被引:0
|
作者
Takuya Katayama
Erika Kuno
机构
[1] Gakushuin University,Department of Mathematics, Faculty of Science
[2] Osaka University,Department of Mathematics, Graduate School of Science
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Right-angled Artin groups; Curve graphs; Mapping class groups; Nonorientable surfaces; Two-sided curves; 20F36; 20F65; 20F67; 57K20;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a closed nonorientable surface with or without marked points. In this paper we prove that, for every finite full subgraph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document}, the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N. Here, Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} is the subgraph, induced by essential two-sided simple closed curves in N, of the ordinary curve graph C(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}(N)$$\end{document}. In addition, we show that there exists a finite graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} which is not a full subgraph of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} for some N, but the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N.
引用
收藏
相关论文
共 50 条
  • [41] GROUPS QUASI-ISOMETRIC TO RIGHT-ANGLED ARTIN GROUPS
    Huang, Jingyin
    Kleiner, Bruce
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (03) : 537 - 602
  • [42] Embedding right-angled Artin groups into graph braid groups
    Sabalka, Lucas
    GEOMETRIAE DEDICATA, 2007, 124 (01) : 191 - 198
  • [43] Trees, homology, and automorphism groups of right-angled Artin groups
    Aramayona, Javier
    Fernandez, Jose L.
    Fernandez, Pablo
    Martinez-Perez, Conchita
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (03) : 293 - 315
  • [44] ON THE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS AND MAPPING CLASS GROUPS
    Bridson, Martin R.
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (02) : 203 - 212
  • [45] Constructing presentations of subgroups of right-angled Artin groups
    Bridson, Martin R.
    Tweedale, Michael
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 1 - 14
  • [46] The asymptotic geometry of right-angled Artin groups, I
    Bestvina, Mladen
    Kleiner, Bruce
    Sageev, Michah
    GEOMETRY & TOPOLOGY, 2008, 12 : 1653 - 1699
  • [47] Dehn functions of subgroups of right-angled Artin groups
    Noel Brady
    Ignat Soroko
    Geometriae Dedicata, 2019, 200 : 197 - 239
  • [48] Subgroup growth of right-angled Artin and Coxeter groups
    Baik, Hyungryul
    Petri, Bram
    Raimbault, Jean
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (02): : 556 - 588
  • [49] The conjugacy problem in subgroups of right-angled Artin groups
    Crisp, John
    Godelle, Eddy
    Wiest, Bert
    JOURNAL OF TOPOLOGY, 2009, 2 (03) : 442 - 460
  • [50] Right-angled Artin groups and the cohomology basis graph
    Flores, Ramon
    Kahrobaei, Delaram
    Koberda, Thomas
    Le Coz, Corentin
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025,