Right-angled Artin groups and curve graphs of nonorientable surfaces

被引:0
|
作者
Takuya Katayama
Erika Kuno
机构
[1] Gakushuin University,Department of Mathematics, Faculty of Science
[2] Osaka University,Department of Mathematics, Graduate School of Science
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Right-angled Artin groups; Curve graphs; Mapping class groups; Nonorientable surfaces; Two-sided curves; 20F36; 20F65; 20F67; 57K20;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a closed nonorientable surface with or without marked points. In this paper we prove that, for every finite full subgraph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document}, the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N. Here, Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} is the subgraph, induced by essential two-sided simple closed curves in N, of the ordinary curve graph C(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}(N)$$\end{document}. In addition, we show that there exists a finite graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} which is not a full subgraph of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} for some N, but the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N.
引用
收藏
相关论文
共 50 条
  • [31] EFFECTIVE QUASIMORPHISMS ON RIGHT-ANGLED ARTIN GROUPS
    Fernos, Talia
    Forester, Max
    Tao, Jing
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (04) : 1575 - 1626
  • [32] Relative automorphism groups of right-angled Artin groups
    Day, Matthew B.
    Wade, Richard D.
    JOURNAL OF TOPOLOGY, 2019, 12 (03) : 759 - 798
  • [33] Amenable covers of right-angled Artin groups
    Li, Kevin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (02) : 978 - 989
  • [34] The R∞-property for right-angled Artin groups
    Dekimpe, Karel
    Senden, Pieter
    TOPOLOGY AND ITS APPLICATIONS, 2021, 293
  • [35] Algebraic invariants for right-angled Artin groups
    Papadima, S
    Suciu, AI
    MATHEMATISCHE ANNALEN, 2006, 334 (03) : 533 - 555
  • [36] The action dimension of right-angled Artin groups
    Avramidi, Grigori
    Davis, Michael W.
    Okun, Boris
    Schreve, Kevin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 115 - 126
  • [37] The geometry of the curve graph of a right-angled Artin group
    Kim, Sang-Hyun
    Koberda, Thomas
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (02) : 121 - 169
  • [38] Cactus groups, twin groups, and right-angled Artin groups
    Paolo Bellingeri
    Hugo Chemin
    Victoria Lebed
    Journal of Algebraic Combinatorics, 2024, 59 : 153 - 178
  • [39] Cactus groups, twin groups, and right-angled Artin groups
    Bellingeri, Paolo
    Chemin, Hugo
    Lebed, Victoria
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 153 - 178
  • [40] Aut-Invariant Word Norm on Right-Angled Artin and Right-Angled Coxeter Groups
    Marcinkowski, Michal
    MICHIGAN MATHEMATICAL JOURNAL, 2020, 69 (02) : 285 - 295