Subgroup growth of right-angled Artin and Coxeter groups

被引:4
|
作者
Baik, Hyungryul [1 ]
Petri, Bram [2 ]
Raimbault, Jean [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Univ Bonn, Math Inst, Endenicher Allee 60, Bonn, Germany
[3] Univ Toulouse, Inst Math Toulouse, UMR5219, CNRS,UPS IMT, F-31062 Toulouse 9, France
关键词
20E07; 20F55 (primary); 22E40 (secondary); INDEPENDENT SETS; NUMBER;
D O I
10.1112/jlms.12277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the factorial growth rate of the number of finite-index subgroups of right-angled Artin groups as a function of the index. This turns out to depend solely on the independence number of the defining graph. We also make a conjecture for right-angled Coxeter groups and prove that it holds in a limited setting.
引用
收藏
页码:556 / 588
页数:33
相关论文
共 50 条
  • [1] Right-angled Artin subgroups of right-angled Coxeter and Artin groups
    Dani, Pallavi
    Levcovitz, Ivan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (02): : 755 - 802
  • [2] Right-angled Artin groups are commensurable with right-angled Coxeter groups
    Davis, MW
    Januszkiewicz, T
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (03) : 229 - 235
  • [3] Aut-Invariant Word Norm on Right-Angled Artin and Right-Angled Coxeter Groups
    Marcinkowski, Michal
    MICHIGAN MATHEMATICAL JOURNAL, 2020, 69 (02) : 285 - 295
  • [4] Stable commutator length in right-angled Artin and Coxeter groups
    Chen, Lvzhou
    Heuer, Nicolaus
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (01): : 1 - 60
  • [5] The strong Atiyah conjecture for right-angled Artin and Coxeter groups
    Peter Linnell
    Boris Okun
    Thomas Schick
    Geometriae Dedicata, 2012, 158 : 261 - 266
  • [6] The strong Atiyah conjecture for right-angled Artin and Coxeter groups
    Linnell, Peter
    Okun, Boris
    Schick, Thomas
    GEOMETRIAE DEDICATA, 2012, 158 (01) : 261 - 266
  • [7] Subgroup Growth of Virtually Cyclic Right-Angled Coxeter Groups and Their Free Products
    Baik, Hyungryul
    Petri, Bram
    Raimbault, Jean
    COMBINATORICA, 2019, 39 (04) : 779 - 811
  • [8] Spherical and geodesic growth rates of right-angled Coxeter and Artin groups are Perron numbers
    Kolpakov, Alexander
    Talambutsa, Alexey
    DISCRETE MATHEMATICS, 2020, 343 (03)
  • [9] Subgroup Growth of Virtually Cyclic Right-Angled Coxeter Groups and Their Free Products
    Hyungryul Baik
    Bram Petri
    Jean Raimbault
    Combinatorica, 2019, 39 : 779 - 811
  • [10] Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups
    Panov, T. E.
    Veryovkin, Ya. A.
    SBORNIK MATHEMATICS, 2016, 207 (11) : 1582 - 1600