L(2,1)-labelings of the edge-path-replacement of a graph

被引:0
|
作者
Lü Damei
机构
[1] Nantong University,Department of Mathematics
来源
关键词
Channel assignment; (; ,; )-labeling; (; ,1)-total labeling;
D O I
暂无
中图分类号
学科分类号
摘要
For two positive integers j and k with j≥k, an L(j,k)-labeling of a graph G is an assignment of nonnegative integers to V(G) such that the difference between labels of adjacent vertices is at least j, and the difference between labels of vertices that are distance two apart is at least k. The span of an L(j,k)-labeling of a graph G is the difference between the maximum and minimum integers used by it. The L(j,k)-labelings-number of G is the minimum span over all L(j,k)-labelings of G. This paper focuses on L(2,1)-labelings-number of the edge-path-replacement G(Pk) of a graph G. Note that G(P3) is the incidence graph of G. L(2,1)-labelings of the edge-path-replacement G(P3) of a graph, called (2,1)-total labeling of G, was introduced by Havet and Yu in 2002 (Workshop graphs and algorithms, Dijon, France, 2003; Discrete Math. 308:498–513, 2008). They (Havet and Yu, Discrete Math. 308:498–513, 2008) obtain the bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta+1\leq\lambda^{T}_{2}(G)\leq2\Delta+1$\end{document} and conjectured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda^{T}_{2}(G)\leq\Delta+3$\end{document}. In this paper, we obtain that λ(G(Pk))≤Δ+2 for k≥5, and conjecture λ(G(P4))≤Δ+2 for any graph G with maximum degree Δ.
引用
收藏
页码:385 / 392
页数:7
相关论文
共 50 条
  • [1] L(2,1)-labelings of the edge-path-replacement of a graph
    Lu Damei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (02) : 385 - 392
  • [2] L(2,1)-Edge-Labelings of the Edge-Path-Replacement of a Graph
    Lin, Nianfeng
    Lu, Damei
    Wang, Jinhua
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (01) : 91 - 100
  • [3] L(d, 1)-labelings of the edge-path-replacement of a graph
    Lu, Damei
    Lin, Nianfeng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (04) : 819 - 831
  • [4] L(d,1)-labelings of the edge-path-replacement of a graph
    Damei Lü
    Nianfeng Lin
    Journal of Combinatorial Optimization, 2013, 26 : 819 - 831
  • [5] L(d, 1)-edge-labelings of the edge-path-replacement of a graph
    Lin, Nianfeng
    ARS COMBINATORIA, 2020, 150 : 295 - 309
  • [6] L(,1)-labelings of the edge-path-replacement by factorization of graphs
    Karst, Nathaniel
    Oehrlein, Jessica
    Troxell, Denise Sakai
    Zhu, Junjie
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (01) : 34 - 41
  • [7] L(2,1)-labelings of the edge-multiplicity-paths-replacement of a graph
    Lu, Damei
    Sun, Jianping
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 396 - 404
  • [8] L(2,1)-labelings of the edge-multiplicity-paths-replacement of a graph
    Damei Lü
    Jianping Sun
    Journal of Combinatorial Optimization, 2016, 31 : 396 - 404
  • [9] L(2,1)-circular-labelings of the edge-path-replacements
    Lv, Damei
    Lin, Nianfeng
    ARS COMBINATORIA, 2021, 154 : 23 - 30
  • [10] Reconfiguration of list L(2,1)-labelings in a graph
    Ito, Takehiro
    Kawamura, Kazuto
    Ono, Hirotaka
    Zhou, Xiao
    THEORETICAL COMPUTER SCIENCE, 2014, 544 : 84 - 97