L(2,1)-labelings of the edge-path-replacement of a graph

被引:0
|
作者
Lü Damei
机构
[1] Nantong University,Department of Mathematics
来源
关键词
Channel assignment; (; ,; )-labeling; (; ,1)-total labeling;
D O I
暂无
中图分类号
学科分类号
摘要
For two positive integers j and k with j≥k, an L(j,k)-labeling of a graph G is an assignment of nonnegative integers to V(G) such that the difference between labels of adjacent vertices is at least j, and the difference between labels of vertices that are distance two apart is at least k. The span of an L(j,k)-labeling of a graph G is the difference between the maximum and minimum integers used by it. The L(j,k)-labelings-number of G is the minimum span over all L(j,k)-labelings of G. This paper focuses on L(2,1)-labelings-number of the edge-path-replacement G(Pk) of a graph G. Note that G(P3) is the incidence graph of G. L(2,1)-labelings of the edge-path-replacement G(P3) of a graph, called (2,1)-total labeling of G, was introduced by Havet and Yu in 2002 (Workshop graphs and algorithms, Dijon, France, 2003; Discrete Math. 308:498–513, 2008). They (Havet and Yu, Discrete Math. 308:498–513, 2008) obtain the bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta+1\leq\lambda^{T}_{2}(G)\leq2\Delta+1$\end{document} and conjectured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda^{T}_{2}(G)\leq\Delta+3$\end{document}. In this paper, we obtain that λ(G(Pk))≤Δ+2 for k≥5, and conjecture λ(G(P4))≤Δ+2 for any graph G with maximum degree Δ.
引用
收藏
页码:385 / 392
页数:7
相关论文
共 50 条
  • [21] L(d, 1)-labelings of the edge-multiplicity-path-replacements
    Du, Juan
    Lv, Damei
    ARS COMBINATORIA, 2017, 131 : 407 - 424
  • [22] L(2,1)-labelings on the modular product of two graphs
    Shao, Zhendong
    Solis-Oba, Roberto
    THEORETICAL COMPUTER SCIENCE, 2013, 487 : 74 - 81
  • [23] L(1, 2)-edge-labelings for lattices
    HE Dan
    LIN Wen-song
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2014, 29 (02) : 230 - 240
  • [24] The minimum span of L(2,1)-labelings of generalized flowers
    Karst, Nathaniel
    Oehrlein, Jessica
    Troxell, Denise Sakai
    Zhu, Junjie
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 139 - 151
  • [25] L(2,1)-labelings of Cartesian products of two cycles
    Schwarz, Christopher
    Troxell, Denise Sakai
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (10) : 1522 - 1540
  • [26] L(1, 2)-edge-labelings for lattices
    Dan He
    Wen-song Lin
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 230 - 240
  • [27] On L(2,1)-labelings of Cartesian products of paths and cycles
    Kuo, D
    Yan, JH
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 137 - 144
  • [28] L(1, 2)-edge-labelings for lattices
    HE Dan
    LIN Wen-song
    Applied Mathematics:A Journal of Chinese Universities, 2014, (02) : 230 - 240
  • [29] On the structure of graphs with non-surjective L(2,1)-labelings
    Georges, JP
    Mauro, DW
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) : 208 - 223
  • [30] On the Upper Bounds of L(2,1)-Labelings on Cartesian Sum of Graphs
    Shao, Zhendong
    Averbakh, Igor
    ARS COMBINATORIA, 2020, 153 : 227 - 243