L(2,1)-labelings of the edge-path-replacement of a graph

被引:0
|
作者
Lü Damei
机构
[1] Nantong University,Department of Mathematics
来源
关键词
Channel assignment; (; ,; )-labeling; (; ,1)-total labeling;
D O I
暂无
中图分类号
学科分类号
摘要
For two positive integers j and k with j≥k, an L(j,k)-labeling of a graph G is an assignment of nonnegative integers to V(G) such that the difference between labels of adjacent vertices is at least j, and the difference between labels of vertices that are distance two apart is at least k. The span of an L(j,k)-labeling of a graph G is the difference between the maximum and minimum integers used by it. The L(j,k)-labelings-number of G is the minimum span over all L(j,k)-labelings of G. This paper focuses on L(2,1)-labelings-number of the edge-path-replacement G(Pk) of a graph G. Note that G(P3) is the incidence graph of G. L(2,1)-labelings of the edge-path-replacement G(P3) of a graph, called (2,1)-total labeling of G, was introduced by Havet and Yu in 2002 (Workshop graphs and algorithms, Dijon, France, 2003; Discrete Math. 308:498–513, 2008). They (Havet and Yu, Discrete Math. 308:498–513, 2008) obtain the bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta+1\leq\lambda^{T}_{2}(G)\leq2\Delta+1$\end{document} and conjectured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda^{T}_{2}(G)\leq\Delta+3$\end{document}. In this paper, we obtain that λ(G(Pk))≤Δ+2 for k≥5, and conjecture λ(G(P4))≤Δ+2 for any graph G with maximum degree Δ.
引用
收藏
页码:385 / 392
页数:7
相关论文
共 50 条
  • [41] n-fold-L(d, 1)-labelings of the edge-multiplicity-path-replacements
    Lv, Damei
    Lin, Wensong
    ARS COMBINATORIA, 2019, 146 : 341 - 360
  • [42] On the hole index of L(2,1)-labelings of r-regular graphs
    Adams, Sarah Spence
    Tesch, Matthew
    Troxell, Denise Sakai
    Westgate, Bradford
    Wheeland, Cody
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2391 - 2393
  • [43] L(2,1)-Circular Labelings of Certain Generalized Petersen Graphs P(n, 2)
    Li, Yong
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (06) : 954 - 958
  • [44] The Δ2-conjecture for L(2,1)-labelings is true for direct and strong products of graphs
    Klavzar, S
    Spacapan, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (04) : 274 - 277
  • [45] n-fold L(2,1)-labelings of Cartesian product of paths and cycles
    Chang, Fei-Huang
    Chia, Ma-Lian
    Jiang, Shih-Ang
    Kuo, David
    Yan, Jing-Ho
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (03)
  • [46] On L(1, 2)-Edge-Labelings of Some Special Classes of Graphs
    Dan HE
    Wensong LIN
    JournalofMathematicalResearchwithApplications, 2014, 34 (04) : 403 - 413
  • [47] Circular chromatic number and edge-path replacement graph
    Lv, Damei
    Lin, Wensong
    ARS COMBINATORIA, 2019, 144 : 237 - 248
  • [48] An extension of the channel-assignment problem: L(2,1)-labelings of generalized Petersen graphs
    Adams, Sarah Spence
    Cass, Jonathan
    Troxell, Denise Sakai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (05) : 1101 - 1107
  • [49] On L(2,1)-labeling of the Cartesian product of a cycle and a path
    Jha, PK
    Narayanan, A
    Sood, P
    Sundaram, K
    Sunder, V
    ARS COMBINATORIA, 2000, 55 : 81 - 89
  • [50] On L'(2,1)-Edge Coloring Number of Regular Grids
    Deepthy, D.
    Kureethara, Joseph Varghese
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (03): : 65 - 81