Optimal Lipschitz extensions and the infinity laplacian

被引:0
|
作者
Crandall M.G. [1 ]
Evans L.C. [2 ]
Gariepy R.F. [3 ]
机构
[1] Department of Mathematics, University of California, Santa Barbara
[2] Department of Mathematics, University of California, Berkeley
[3] Department of Mathematics, University of Kentucky, Lexington
关键词
Variational Principle; Boundary Data; Comparison Principle; Liouville Theorem; Lipschitz Extension;
D O I
10.1007/s005260000065
中图分类号
学科分类号
摘要
We reconsider in this paper boundary value problems for the so-called "infinity Laplacian" PDE and the relationships with optimal Lipschitz extensions of the boundary data. We provide some fairly elegant new proofs, which clarify and simplify previous work, and in particular draw attention to the fact that solutions may be characterized by a comparison principle with appropriate cones. We in particular show how comparison with cones directly implies the variational principle associated with the equation. In addition, we establish a Liouville theorem for subsolutions bounded above by planes.
引用
收藏
页码:123 / 139
页数:16
相关论文
共 50 条
  • [31] The obstacle problem for the infinity fractional laplacian
    Moreno Mérida L.
    Vidal R.E.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (1): : 7 - 15
  • [32] Discontinuous Gradient Constraints and the Infinity Laplacian
    Juutinen, Petri
    Parviainen, Mikko
    Rossi, Julio D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (08) : 2451 - 2492
  • [33] SOME EXTENSIONS OF OPTIMAL HARDY'S INEQUALITY USING ESTIMATES OF P-LAPLACIAN
    Florea, Aurelia
    Roventa, Ionel
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (03) : 586 - 592
  • [34] Infinity Laplacian equations with singular absorptions
    Damião J. Araújo
    Ginaldo S. Sá
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [35] Tug-of-war and the infinity Laplacian
    Peres, Yuval
    Schramm, Oded
    Sheffield, Scott
    Wilson, David B.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (01) : 167 - 210
  • [36] Tangent lines of contact for the infinity Laplacian
    Yu, YF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (04) : 349 - 355
  • [37] SUBLINEAR HIGSON CORONA AND LIPSCHITZ EXTENSIONS
    Cencelj, M.
    Dydak, J.
    Smrekar, J.
    Vavpetic, A.
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (04): : 1307 - 1322
  • [38] Infinity Laplacian equation with strong absorptions
    Araujo, Damiao J.
    Leitao, Raimundo
    Teixeira, Eduardo V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (06) : 2249 - 2267
  • [39] Lipschitz extensions on generalized Grushin spaces
    Bieske, T
    MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (01) : 3 - 31
  • [40] Evolution driven by the infinity fractional Laplacian
    Félix del Teso
    Jørgen Endal
    Espen R. Jakobsen
    Juan Luis Vázquez
    Calculus of Variations and Partial Differential Equations, 2023, 62