Discontinuous Gradient Constraints and the Infinity Laplacian

被引:10
|
作者
Juutinen, Petri [1 ]
Parviainen, Mikko [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
[2] Univ Alicante, Dept Anal Matemat, Ap Correos 99, E-03080 Alicante, Spain
基金
芬兰科学院;
关键词
VISCOSITY SOLUTIONS; LIPSCHITZ EXTENSIONS; UNIQUENESS; EQUATIONS; NORM;
D O I
10.1093/imrn/rnv214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by tug- of-war games and asymptotic analysis of certain variational problems, we consider the following gradient constraint problem: given a bounded domain Omega subset of R-n, a continuous function f : partial derivative Omega -> R, and a nonempty subset D subset of Omega, find a solution to {min {Delta(infinity)u,vertical bar Du vertical bar - chi(D)} = 0 in Omega u = f on partial derivative Omega, where Delta(infinity) is the infinity Laplace operator. We prove that this problem always has a solution that is unique if (D) over bar = (intD) over bar. If this regularity condition on D fails, then solutions obtained from game theory and L-p-approximation need not coincide.
引用
收藏
页码:2451 / 2492
页数:42
相关论文
共 50 条
  • [1] Infinity Laplacian on graphs with gradient terms for image and data clustering
    Alkama, Sadia
    Desquesnes, Xavier
    Elmoataz, Abderrahim
    PATTERN RECOGNITION LETTERS, 2014, 41 : 65 - 72
  • [2] Liouville theorems for infinity Laplacian with gradient and KPP type equation
    Biswas, Anup
    Vo, Hoang-Hung
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (03) : 1223 - 1256
  • [3] A HOLDER INFINITY LAPLACIAN
    Chambolle, Antonin
    Lindgren, Erik
    Monneau, Regis
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (03) : 799 - 835
  • [4] Harnack inequality and principal eigentheory for general infinity Laplacian operators with gradient in RN and applications
    Biswas, Anup
    Hoang-Hung Vo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [5] A Symmetry Problem for the Infinity Laplacian
    Crasta, Graziano
    Fragala, Ilaria
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (18) : 8411 - 8436
  • [6] The Gelfand problem for the Infinity Laplacian
    Charro, Fernando
    Son, Byungjae
    Wang, Peiyong
    MATHEMATICS IN ENGINEERING, 2022, 5 (02): : 1 - 28
  • [7] On the evolution governed by the infinity Laplacian
    Petri Juutinen
    Bernd Kawohl
    Mathematische Annalen, 2006, 335 : 819 - 851
  • [8] The infinity Laplacian with a transport term
    Lopez-Soriano, Rafael
    Navarro-Climent, Jose C.
    Rossi, Julio D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 752 - 765
  • [9] On the evolution governed by the infinity Laplacian
    Juutinen, Petri
    Kawohl, Bernd
    MATHEMATISCHE ANNALEN, 2006, 335 (04) : 819 - 851
  • [10] Large solutions for the infinity Laplacian
    Juutinen, Petri
    Rossi, Julio D.
    ADVANCES IN CALCULUS OF VARIATIONS, 2008, 1 (03) : 271 - 289