Optimal Lipschitz extensions and the infinity laplacian

被引:0
|
作者
Crandall M.G. [1 ]
Evans L.C. [2 ]
Gariepy R.F. [3 ]
机构
[1] Department of Mathematics, University of California, Santa Barbara
[2] Department of Mathematics, University of California, Berkeley
[3] Department of Mathematics, University of Kentucky, Lexington
关键词
Variational Principle; Boundary Data; Comparison Principle; Liouville Theorem; Lipschitz Extension;
D O I
10.1007/s005260000065
中图分类号
学科分类号
摘要
We reconsider in this paper boundary value problems for the so-called "infinity Laplacian" PDE and the relationships with optimal Lipschitz extensions of the boundary data. We provide some fairly elegant new proofs, which clarify and simplify previous work, and in particular draw attention to the fact that solutions may be characterized by a comparison principle with appropriate cones. We in particular show how comparison with cones directly implies the variational principle associated with the equation. In addition, we establish a Liouville theorem for subsolutions bounded above by planes.
引用
收藏
页码:123 / 139
页数:16
相关论文
共 50 条
  • [21] The infinity Laplacian in infinite dimensions
    Thierry Gaspari
    Calculus of Variations and Partial Differential Equations, 2004, 21 : 243 - 257
  • [22] Characterizations and Extensions of Lipschitz–α Operators
    Huai Xin Cao
    Jian Hua Zhang
    Zong Ben Xu
    Acta Mathematica Sinica, 2006, 22 : 671 - 678
  • [23] The infinity Laplacian in infinite dimensions
    Gaspari, T
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (03) : 243 - 257
  • [24] Extensions of continuous and Lipschitz functions
    Matousková, E
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (02): : 208 - 217
  • [25] Lipschitz retracts, selectors, and extensions
    Przeslawski, K
    Yost, D
    MICHIGAN MATHEMATICAL JOURNAL, 1995, 42 (03) : 555 - 571
  • [26] Continuity of extensions of Lipschitz maps
    Ciosmak, Krzysztof J.
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (02) : 567 - 588
  • [27] Lipschitz continuity of tangent directions at infinity
    Dinh, Si Tiep
    Pham, Tien-Son
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [28] The Mixed Problem for the Laplacian in Lipschitz Domains
    Ott, Katharine A.
    Brown, Russell M.
    POTENTIAL ANALYSIS, 2013, 38 (04) : 1333 - 1364
  • [29] The Mixed Problem for the Laplacian in Lipschitz Domains
    Katharine A. Ott
    Russell M. Brown
    Potential Analysis, 2013, 38 : 1333 - 1364
  • [30] Optimal estimates for the inhomogeneous problem for the bi-Laplacian in three-dimensional Lipschitz domains
    Mitrea I.
    Mitrea M.
    Wright M.
    Journal of Mathematical Sciences, 2011, 172 (1) : 24 - 134