The infinity Laplacian in infinite dimensions

被引:0
|
作者
Thierry Gaspari
机构
[1] Université Bordeaux 1,Mathématiques Pures de Bordeaux (MPB), UMR 5467 CNRS
关键词
Differential Equation; Banach Space; Partial Differential Equation; Viscosity Solution; Lipschitz Function;
D O I
暂无
中图分类号
学科分类号
摘要
We study three properties of real-valued functions defined on a Banach space: The absolutely minimizing Lipschitz functions, the viscosity solutions of the infinity Laplacian partial differential equation, and the functions which satisfy comparison with cones. We prove that these notions are equivalent, and we show the existence of such functions. These results are new in the infinite-dimensional case.
引用
收藏
页码:243 / 257
页数:14
相关论文
共 50 条
  • [1] The infinity Laplacian in infinite dimensions
    Gaspari, T
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (03) : 243 - 257
  • [2] A HOLDER INFINITY LAPLACIAN
    Chambolle, Antonin
    Lindgren, Erik
    Monneau, Regis
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (03) : 799 - 835
  • [3] A Symmetry Problem for the Infinity Laplacian
    Crasta, Graziano
    Fragala, Ilaria
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (18) : 8411 - 8436
  • [4] The Gelfand problem for the Infinity Laplacian
    Charro, Fernando
    Son, Byungjae
    Wang, Peiyong
    MATHEMATICS IN ENGINEERING, 2022, 5 (02): : 1 - 28
  • [5] On the evolution governed by the infinity Laplacian
    Petri Juutinen
    Bernd Kawohl
    Mathematische Annalen, 2006, 335 : 819 - 851
  • [6] The infinity Laplacian with a transport term
    Lopez-Soriano, Rafael
    Navarro-Climent, Jose C.
    Rossi, Julio D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 752 - 765
  • [7] On the evolution governed by the infinity Laplacian
    Juutinen, Petri
    Kawohl, Bernd
    MATHEMATISCHE ANNALEN, 2006, 335 (04) : 819 - 851
  • [8] Large solutions for the infinity Laplacian
    Juutinen, Petri
    Rossi, Julio D.
    ADVANCES IN CALCULUS OF VARIATIONS, 2008, 1 (03) : 271 - 289
  • [9] INFINITE DIMENSIONAL LAPLACIAN
    PIECH, MA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A235 - A235
  • [10] The obstacle problem for the infinity fractional laplacian
    Moreno Mérida L.
    Vidal R.E.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (1): : 7 - 15