The infinity Laplacian in infinite dimensions

被引:0
|
作者
Thierry Gaspari
机构
[1] Université Bordeaux 1,Mathématiques Pures de Bordeaux (MPB), UMR 5467 CNRS
关键词
Differential Equation; Banach Space; Partial Differential Equation; Viscosity Solution; Lipschitz Function;
D O I
暂无
中图分类号
学科分类号
摘要
We study three properties of real-valued functions defined on a Banach space: The absolutely minimizing Lipschitz functions, the viscosity solutions of the infinity Laplacian partial differential equation, and the functions which satisfy comparison with cones. We prove that these notions are equivalent, and we show the existence of such functions. These results are new in the infinite-dimensional case.
引用
收藏
页码:243 / 257
页数:14
相关论文
共 50 条
  • [31] On aspects of the normalized Infinity Laplacian on Finsler manifolds
    Mohammed, Ahmed
    Pessoa, Leandro F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 246
  • [32] Some properties of the ground states of the infinity Laplacian
    Yu, Yifeng
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (02) : 947 - 964
  • [33] The infinity Laplacian, Aronsson's equation and their generalizations
    Barron, E. N.
    Evans, L. C.
    Jensen, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) : 77 - 101
  • [34] A weighted eigenvalue problem of the biased infinity Laplacian*
    Liu, Fang
    Yang, Xiao-Ping
    NONLINEARITY, 2021, 34 (02) : 1197 - 1237
  • [35] An adaptive finite element method for the infinity Laplacian
    Lakkis, Omar
    Pryer, Tristan
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 283 - 291
  • [36] On the Aleksandrov–Bakelman–Pucci estimate for the infinity Laplacian
    Fernando Charro
    Guido De Philippis
    Agnese Di Castro
    Davi Máximo
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 667 - 693
  • [37] Solutions to an inhomogeneous equation involving infinity Laplacian
    Liu, Fang
    Yang, Xiao-Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5693 - 5701
  • [38] Solutions for Equations Involving the Infinity-Laplacian
    da Silva M.F.
    Freire I.L.
    Faleiros A.C.
    International Journal of Applied and Computational Mathematics, 2017, 3 (2) : 395 - 410
  • [39] BERNOULLI FREE BOUNDARY PROBLEM FOR THE INFINITY LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 821 - 844
  • [40] Constrained radial symmetry for the infinity-Laplacian
    Greco, Antonio
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 239 - 248