Metric Mean Dimension of Free Semigroup Actions for Non-Compact Sets

被引:0
|
作者
Tang, Yanjie [1 ]
Ye, Xiaojiang [1 ]
Ma, Dongkui [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
关键词
Free semigroup actions; Metric mean dimension; Local metric mean dimensions; Skew product; Irregular set; GLUING ORBIT PROPERTY; TOPOLOGICAL-ENTROPY; VARIATIONAL PRINCIPLE; POINTS;
D O I
10.1007/s10883-024-09696-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the notions of upper metric mean dimension, u-upper metric mean dimension, l-upper metric mean dimension of free semigroup actions for non-compact sets via Carath & eacute;odory-Pesin structure. Firstly, the lower and upper estimations of the upper metric mean dimension of free semigroup actions are obtained by local metric mean dimensions. Secondly, one proves a variational principle that relates the u-upper metric mean dimension of free semigroup actions for non-compact sets with the corresponding skew product transformation. Furthermore, using the variational principle above, phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-irregular set acting on free semigroup actions shows full upper metric mean dimension in the system with the gluing orbit property. Some of our analysis generalizes the results obtained by Carvalho et al. [11], Lima and Varandas [21].
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Lifts of Non-Compact Convex Sets and Cone Factorizations
    Wang, Chu
    Zhi, Lihong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (05) : 1632 - 1655
  • [42] Lifts of Non-Compact Convex Sets and Cone Factorizations
    Chu Wang
    Lihong Zhi
    Journal of Systems Science and Complexity, 2020, 33 : 1632 - 1655
  • [43] Variational Principles for BS Dimension of Subsets for Free Semigroup Actions
    Liu, Lei
    Zhao, Cao
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2024, 30 (04)
  • [44] Chain recurrent sets for flows on non-compact spaces
    Choi S.K.
    Chu C.-K.
    Park J.S.
    Journal of Dynamics and Differential Equations, 2002, 14 (3) : 597 - 611
  • [45] Lifts of Non-Compact Convex Sets and Cone Factorizations
    WANG Chu
    ZHI Lihong
    JournalofSystemsScience&Complexity, 2020, 33 (05) : 1632 - 1655
  • [46] A QUAZI-SOLUTION METHOD ON THE NON-COMPACT SETS
    MOROZOV, VA
    DOKLADY AKADEMII NAUK SSSR, 1982, 263 (05): : 1057 - 1061
  • [47] A thermodynamic definition of topological pressure for non-compact sets
    Thompson, Daniel J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 527 - 547
  • [48] Linearizability of non-expansive semigroup actions on metric spaces
    Schroeder, Lutz
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (14) : 1576 - 1579
  • [49] Upper metric mean dimension with potential for amenable group actions
    Chen, Hu
    Li, Zhiming
    STUDIA MATHEMATICA, 2025, 280 (03) : 269 - 304
  • [50] Weighted upper metric mean dimension for amenable group actions
    Tang, Dingxuan
    Wu, Haiyan
    Li, Zhiming
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (03): : 382 - 397