Metric Mean Dimension of Free Semigroup Actions for Non-Compact Sets

被引:0
|
作者
Tang, Yanjie [1 ]
Ye, Xiaojiang [1 ]
Ma, Dongkui [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
关键词
Free semigroup actions; Metric mean dimension; Local metric mean dimensions; Skew product; Irregular set; GLUING ORBIT PROPERTY; TOPOLOGICAL-ENTROPY; VARIATIONAL PRINCIPLE; POINTS;
D O I
10.1007/s10883-024-09696-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the notions of upper metric mean dimension, u-upper metric mean dimension, l-upper metric mean dimension of free semigroup actions for non-compact sets via Carath & eacute;odory-Pesin structure. Firstly, the lower and upper estimations of the upper metric mean dimension of free semigroup actions are obtained by local metric mean dimensions. Secondly, one proves a variational principle that relates the u-upper metric mean dimension of free semigroup actions for non-compact sets with the corresponding skew product transformation. Furthermore, using the variational principle above, phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-irregular set acting on free semigroup actions shows full upper metric mean dimension in the system with the gluing orbit property. Some of our analysis generalizes the results obtained by Carvalho et al. [11], Lima and Varandas [21].
引用
收藏
页数:24
相关论文
共 50 条