Metric Mean Dimension of Free Semigroup Actions for Non-Compact Sets

被引:0
|
作者
Tang, Yanjie [1 ]
Ye, Xiaojiang [1 ]
Ma, Dongkui [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
关键词
Free semigroup actions; Metric mean dimension; Local metric mean dimensions; Skew product; Irregular set; GLUING ORBIT PROPERTY; TOPOLOGICAL-ENTROPY; VARIATIONAL PRINCIPLE; POINTS;
D O I
10.1007/s10883-024-09696-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the notions of upper metric mean dimension, u-upper metric mean dimension, l-upper metric mean dimension of free semigroup actions for non-compact sets via Carath & eacute;odory-Pesin structure. Firstly, the lower and upper estimations of the upper metric mean dimension of free semigroup actions are obtained by local metric mean dimensions. Secondly, one proves a variational principle that relates the u-upper metric mean dimension of free semigroup actions for non-compact sets with the corresponding skew product transformation. Furthermore, using the variational principle above, phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-irregular set acting on free semigroup actions shows full upper metric mean dimension in the system with the gluing orbit property. Some of our analysis generalizes the results obtained by Carvalho et al. [11], Lima and Varandas [21].
引用
收藏
页数:24
相关论文
共 50 条
  • [21] HYPERSPACES OF NON-COMPACT METRIC-SPACES
    CURTIS, DW
    COMPOSITIO MATHEMATICA, 1980, 40 (02) : 139 - 152
  • [22] Some Variational Principles for the Metric Mean Dimension of a Semigroup Action
    Rodrigues, Fagner B. B.
    Jacobus, Thomas
    Silva, Marcus V. V.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 919 - 944
  • [23] Some Variational Principles for the Metric Mean Dimension of a Semigroup Action
    Fagner B. Rodrigues
    Thomas Jacobus
    Marcus V. Silva
    Journal of Dynamical and Control Systems, 2023, 29 : 919 - 944
  • [24] Actions of non-compact and non-locally compact Polish groups
    Solecki, S
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (04) : 1881 - 1894
  • [26] Examples of non-compact quantum group actions
    Soltan, Piotr Mikolaj
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (01) : 224 - 236
  • [27] Weighted Entropy of a Flow on Non-compact Sets
    Jinghua Shen
    Leiye Xu
    Xiaomin Zhou
    Journal of Dynamics and Differential Equations, 2020, 32 : 181 - 203
  • [28] Weighted Entropy of a Flow on Non-compact Sets
    Shen, Jinghua
    Xu, Leiye
    Zhou, Xiaomin
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (01) : 181 - 203
  • [29] The moment problem for non-compact semialgebraic sets
    Powers, Victoria
    Scheiderer, Claus
    ADVANCES IN GEOMETRY, 2001, 1 (01) : 71 - 88
  • [30] TOPOLOGICAL ENTROPY OF FREE SEMIGROUP ACTIONS FOR NONCOMPACT SETS
    Ju, Yujun
    Ma, Dongkui
    Wang, Yupan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 995 - 1017