On convex polygons of maximal width

被引:0
|
作者
A. Bezdek
F. Fodor
机构
[1] The Mathematical Institute of the,
[2] Hungarian Academy of Sciences,undefined
[3] Budapest,undefined
[4] Department of Mathematics,undefined
[5] Auburn University,undefined
[6] AL 36849-5310,undefined
[7] USA,undefined
来源
Archiv der Mathematik | 2000年 / 74卷
关键词
Maximal Width; Convex Polygon; Constant Width; Equal Side; Reuleaux Polygon;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the problem of finding the n-sided (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n\geq 3$\end{document}) polygons of diameter 1 which have the largest possible width wn. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w_4=w_3= {\sqrt 3 \over 2}$\end{document} and, in general, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w_n \leq \cos {\pi \over 2n}$ \end{document}. Equality holds if n has an odd divisor greater than 1 and in this case a polygon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal P$\end{document} is extremal if and only if it has equal sides and it is inscribed in a Reuleaux polygon of constant width 1, such that the vertices of the Reuleaux polygon are also vertices of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal P$\end{document}.
引用
收藏
页码:75 / 80
页数:5
相关论文
共 50 条
  • [41] Isoperimetric Polygons of Maximum Width
    Charles Audet
    Pierre Hansen
    Frédéric Messine
    Discrete & Computational Geometry, 2009, 41 : 45 - 60
  • [42] MAXIMAL AREAS OF REULEAUX POLYGONS
    SALLEE, GT
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (02): : 175 - &
  • [43] Isoperimetric Polygons of Maximum Width
    Audet, Charles
    Hansen, Pierre
    Messine, Frederic
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (01) : 45 - 60
  • [44] ON THE MULTIMODALITY OF DISTANCES IN CONVEX POLYGONS
    AVIS, D
    TOUSSAINT, GT
    BHATTACHARYA, BK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1982, 8 (02) : 153 - 156
  • [45] Convex Polygons in Geometric Triangulations
    Dumitrescu, Adrian
    Toth, Csaba D.
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (05): : 641 - 659
  • [46] Discrepancy with respect to convex polygons
    Chen, W. W. L.
    Travaglini, G.
    JOURNAL OF COMPLEXITY, 2007, 23 (4-6) : 662 - 672
  • [47] INTERVERTEX DISTANCES IN CONVEX POLYGONS
    ERDOS, P
    FISHBURN, P
    DISCRETE APPLIED MATHEMATICS, 1995, 60 (1-3) : 149 - 158
  • [48] Triangle dissections of convex polygons
    Dochkova, J
    Mengersen, I
    UTILITAS MATHEMATICA, 2005, 68 : 255 - 269
  • [49] On recursive refinement of convex polygons
    Lai, Ming-Jun
    Slavov, George
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 45 : 83 - 90
  • [50] Small distances in convex polygons
    Moric, Filip
    DISCRETE MATHEMATICS, 2013, 313 (18) : 1767 - 1782