On convex polygons of maximal width

被引:0
|
作者
A. Bezdek
F. Fodor
机构
[1] The Mathematical Institute of the,
[2] Hungarian Academy of Sciences,undefined
[3] Budapest,undefined
[4] Department of Mathematics,undefined
[5] Auburn University,undefined
[6] AL 36849-5310,undefined
[7] USA,undefined
来源
Archiv der Mathematik | 2000年 / 74卷
关键词
Maximal Width; Convex Polygon; Constant Width; Equal Side; Reuleaux Polygon;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the problem of finding the n-sided (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n\geq 3$\end{document}) polygons of diameter 1 which have the largest possible width wn. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w_4=w_3= {\sqrt 3 \over 2}$\end{document} and, in general, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w_n \leq \cos {\pi \over 2n}$ \end{document}. Equality holds if n has an odd divisor greater than 1 and in this case a polygon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal P$\end{document} is extremal if and only if it has equal sides and it is inscribed in a Reuleaux polygon of constant width 1, such that the vertices of the Reuleaux polygon are also vertices of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal P$\end{document}.
引用
收藏
页码:75 / 80
页数:5
相关论文
共 50 条
  • [31] Reconfiguring convex polygons
    Aichholzer, O
    Demaine, ED
    Erickson, J
    Hurtado, F
    Overmars, M
    Soss, M
    Toussaint, GT
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (1-2): : 85 - 95
  • [32] THE MORPHOLOGY OF CONVEX POLYGONS
    OLARIU, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (07) : 59 - 68
  • [33] FAST CONVEX POLYGONS
    ABRASH, M
    DR DOBBS JOURNAL, 1991, 16 (03): : 129 - &
  • [34] APPROXIMATION OF CONVEX POLYGONS
    ALT, H
    BLOMER, J
    GODAU, M
    WAGENER, H
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 : 703 - 716
  • [35] On a partition into convex polygons
    Discrete Appl Math, 2 (179):
  • [36] Convex polygons as carriers
    Shephard, G. C.
    MATHEMATICAL GAZETTE, 2016, 100 (547): : 93 - 102
  • [37] On the equipartition of plane convex bodies and convex polygons
    Guardia, Roser
    Hurtado, Ferran
    JOURNAL OF GEOMETRY, 2005, 83 (1-2) : 32 - 45
  • [38] EMPTY CONVEX POLYGONS IN ALMOST CONVEX SETS
    Valtr, Pavel
    Lippner, Gabor
    Karolyi, Gyula
    PERIODICA MATHEMATICA HUNGARICA, 2007, 55 (02) : 121 - 127
  • [39] THE CONVEX-HULL OF A SET OF CONVEX POLYGONS
    CHEN, H
    ROKNE, J
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 42 (3-4) : 163 - 172
  • [40] Empty convex polygons in almost convex sets
    Pavel Valtr
    Gábor Lippner
    Gyula Károlyi
    Periodica Mathematica Hungarica, 2007, 55 : 121 - 127