On convex polygons of maximal width

被引:0
|
作者
A. Bezdek
F. Fodor
机构
[1] The Mathematical Institute of the,
[2] Hungarian Academy of Sciences,undefined
[3] Budapest,undefined
[4] Department of Mathematics,undefined
[5] Auburn University,undefined
[6] AL 36849-5310,undefined
[7] USA,undefined
来源
Archiv der Mathematik | 2000年 / 74卷
关键词
Maximal Width; Convex Polygon; Constant Width; Equal Side; Reuleaux Polygon;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the problem of finding the n-sided (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n\geq 3$\end{document}) polygons of diameter 1 which have the largest possible width wn. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w_4=w_3= {\sqrt 3 \over 2}$\end{document} and, in general, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w_n \leq \cos {\pi \over 2n}$ \end{document}. Equality holds if n has an odd divisor greater than 1 and in this case a polygon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal P$\end{document} is extremal if and only if it has equal sides and it is inscribed in a Reuleaux polygon of constant width 1, such that the vertices of the Reuleaux polygon are also vertices of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal P$\end{document}.
引用
收藏
页码:75 / 80
页数:5
相关论文
共 50 条