Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles

被引:0
|
作者
Ali H. Dhanaliwala
Johnny L. Chen
Shiying Wang
John A. Hossack
机构
[1] University of Virginia,Department of Biomedical Engineering
来源
关键词
Microfluidics; Flow-focusing; Monodisperse microbubbles; Flooded input; In situ production;
D O I
暂无
中图分类号
学科分类号
摘要
Current microbubble-based ultrasound contrast agents are administered intravenously resulting in large losses of contrast agent, systemic distribution, and strict requirements for microbubble longevity and diameter size. Instead we propose in situ production of microbubbles directly within the vasculature to avoid these limitations. Flow-focusing microfluidic devices (FFMDs) are a promising technology for enabling in situ production as they can produce microbubbles with precisely controlled diameters in real-time. While the microfluidic chips are small, the addition of inlets and interconnects to supply the gas and liquid phase greatly increases the footprint of these devices preventing the miniaturization of FFMDs to sizes compatible with medium and small vessels. To overcome this challenge, we introduce a new method for supplying the liquid (shell) phase to a FFMD that eliminates bulky interconnects. A pressurized liquid-filled chamber is coupled to the liquid inlets of an FFMD, which we term a flooded FFMD. The microbubble diameter and production rate of flooded FFMDs were measured optically over a range of gas pressures and liquid flow rates. The smallest FFMD manufactured measured 14.5 × 2.8 × 2.3 mm. A minimum microbubble diameter of 8.1 ± 0.3 μm was achieved at a production rate of 450,000 microbubbles/s (MB/s). This represents a significant improvement with respect to any previously reported result. The flooded design also simplifies parallelization and production rates of up to 670,000 MB/s were achieved using a parallelized version of the flooded FFMD. In addition, an intravascular ultrasound (IVUS) catheter was coupled to the flooded FFMD to produce an integrated ultrasound contrast imaging device. B-mode and IVUS images of microbubbles produced from a flooded FFMD in a gelatin phantom vessel were acquired to demonstrate the potential of in situ microbubble production and real-time imaging. Microbubble production rates of 222,000 MB/s from a flooded FFMD within the vessel lumen provided a 23 dB increase in B-mode contrast. Overall, the flooded design is a critical contribution towards the long-term goal of utilizing in situ produced microbubbles for contrast enhanced ultrasound imaging of, and drug delivery to, the vasculature.
引用
收藏
页码:457 / 467
页数:10
相关论文
共 50 条
  • [1] Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles
    Dhanaliwala, Ali H.
    Chen, Johnny L.
    Wang, Shiying
    Hossack, John A.
    MICROFLUIDICS AND NANOFLUIDICS, 2013, 14 (3-4) : 457 - 467
  • [2] Parallel Output, Liquid Flooded Flow-Focusing Microfluidic Device for Generating Monodisperse Microbubbles within a Catheter
    Chen, Johnny L.
    Dhanaliwala, Ali H.
    Wang, Shiying
    Hossack, John A.
    2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 160 - 163
  • [3] Novel swirl flow-focusing microfluidic device for the production of monodisperse microbubbles
    Arcos-Turmo, Irene
    Angel Herrada, Miguel
    Maria Lopez-Herrera, Jose
    Rivas, David Fernandez
    Ganan-Calvo, Alfonso M.
    Castro-Hernandez, Elena
    MICROFLUIDICS AND NANOFLUIDICS, 2018, 22 (08)
  • [4] Novel swirl flow-focusing microfluidic device for the production of monodisperse microbubbles
    Irene Arcos-Turmo
    Miguel Ángel Herrada
    José María López-Herrera
    David Fernandez Rivas
    Alfonso M. Gañán-Calvo
    Elena Castro-Hernández
    Microfluidics and Nanofluidics, 2018, 22
  • [5] Formation of monodisperse bubbles in a microfluidic flow-focusing device
    Garstecki, P
    Gitlin, I
    DiLuzio, W
    Whitesides, GM
    Kumacheva, E
    Stone, HA
    APPLIED PHYSICS LETTERS, 2004, 85 (13) : 2649 - 2651
  • [6] Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device
    Dang, Trung-Dung
    Kim, Young Ho
    Kim, Hwan Gon
    Kim, Gyu Man
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2012, 18 (04) : 1308 - 1313
  • [7] Controlled Production of Monodisperse Polycaprolactone Microspheres Using Flow-focusing Microfluidic Device
    Kwon, Hyukjin J.
    Kim, Suhyeon
    Kim, Sungwook
    Kim, Ju Hee
    Lim, Geunbae
    BIOCHIP JOURNAL, 2017, 11 (03) : 214 - 218
  • [8] Controlled production of monodisperse polycaprolactone microspheres using flow-focusing microfluidic device
    Hyukjin J. Kwon
    Suhyeon Kim
    Sungwook Kim
    Ju Hee Kim
    Geunbae Lim
    BioChip Journal, 2017, 11 : 214 - 218
  • [9] Simulation of a microfluidic flow-focusing device
    Dupin, Michael M.
    Halliday, Ian
    Care, Chris M.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [10] An axisymmetric flow-focusing microfluidic device
    Takeuchi, S
    Garstecki, P
    Weibel, DB
    Whitesides, GM
    ADVANCED MATERIALS, 2005, 17 (08) : 1067 - +