Parallel Output, Liquid Flooded Flow-Focusing Microfluidic Device for Generating Monodisperse Microbubbles within a Catheter

被引:0
|
作者
Chen, Johnny L. [1 ]
Dhanaliwala, Ali H. [1 ]
Wang, Shiying [1 ]
Hossack, John A. [1 ]
机构
[1] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22903 USA
关键词
Flow Focusing Microfluidic Devices Monodisperse Microbubbles; Parallel Device Production; Flooded Liquid Input; CONTRAST AGENTS; DRUG-DELIVERY; ULTRASOUND; SIZE; SEPARATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method for supplying the liquid phase to a flow focusing microfluidic device (FFMD), designed for the production of monodisperse microbubbles (MBs), is introduced. The FFMD is coupled to a pressurized liquid-filled chamber, avoiding the need for dedicated liquid phase tubing or interconnects from the external field to the microfluidics device. This method significantly reduces the complexity of FFMD fabrication and simplifies the parallelization of FFMDs - an important consideration for increasing MB production rate. Using this new method, flooded FFMDs were fabricated and MB diameter and production rate were measured. The minimum MB size produced was 7.1 +/- 0.5 mu m. The maximum production rate from a single nozzle FFMD was 333,000, MB/s. Production was increased 1.5-fold using a two nozzle, parallelized device, for a maximum production rate of approximately 500,000 MB/s. In addition to increased production, the flooded design allows for miniaturization, with the smallest FFMD measuring 14.5 x 2.8 x 2.3 mm. Finally, B-mode and intravascular ultrasound images were obtained, highlighting the potential for flooded FFMDs to generate microbubbles in situ in a catheter and immediately thereafter image the same MBs in a target blood vessel.
引用
收藏
页码:160 / 163
页数:4
相关论文
共 50 条
  • [1] Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles
    Ali H. Dhanaliwala
    Johnny L. Chen
    Shiying Wang
    John A. Hossack
    Microfluidics and Nanofluidics, 2013, 14 : 457 - 467
  • [2] Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles
    Dhanaliwala, Ali H.
    Chen, Johnny L.
    Wang, Shiying
    Hossack, John A.
    MICROFLUIDICS AND NANOFLUIDICS, 2013, 14 (3-4) : 457 - 467
  • [3] Novel swirl flow-focusing microfluidic device for the production of monodisperse microbubbles
    Arcos-Turmo, Irene
    Angel Herrada, Miguel
    Maria Lopez-Herrera, Jose
    Rivas, David Fernandez
    Ganan-Calvo, Alfonso M.
    Castro-Hernandez, Elena
    MICROFLUIDICS AND NANOFLUIDICS, 2018, 22 (08)
  • [4] Novel swirl flow-focusing microfluidic device for the production of monodisperse microbubbles
    Irene Arcos-Turmo
    Miguel Ángel Herrada
    José María López-Herrera
    David Fernandez Rivas
    Alfonso M. Gañán-Calvo
    Elena Castro-Hernández
    Microfluidics and Nanofluidics, 2018, 22
  • [5] Formation of monodisperse bubbles in a microfluidic flow-focusing device
    Garstecki, P
    Gitlin, I
    DiLuzio, W
    Whitesides, GM
    Kumacheva, E
    Stone, HA
    APPLIED PHYSICS LETTERS, 2004, 85 (13) : 2649 - 2651
  • [6] Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device
    Dang, Trung-Dung
    Kim, Young Ho
    Kim, Hwan Gon
    Kim, Gyu Man
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2012, 18 (04) : 1308 - 1313
  • [7] Controlled Production of Monodisperse Polycaprolactone Microspheres Using Flow-focusing Microfluidic Device
    Kwon, Hyukjin J.
    Kim, Suhyeon
    Kim, Sungwook
    Kim, Ju Hee
    Lim, Geunbae
    BIOCHIP JOURNAL, 2017, 11 (03) : 214 - 218
  • [8] Controlled production of monodisperse polycaprolactone microspheres using flow-focusing microfluidic device
    Hyukjin J. Kwon
    Suhyeon Kim
    Sungwook Kim
    Ju Hee Kim
    Geunbae Lim
    BioChip Journal, 2017, 11 : 214 - 218
  • [9] Simulation of a microfluidic flow-focusing device
    Dupin, Michael M.
    Halliday, Ian
    Care, Chris M.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [10] An axisymmetric flow-focusing microfluidic device
    Takeuchi, S
    Garstecki, P
    Weibel, DB
    Whitesides, GM
    ADVANCED MATERIALS, 2005, 17 (08) : 1067 - +