Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations

被引:0
|
作者
Mian Bahadur Zada
Muhammad Sarwar
Cemil Tunc
机构
[1] University of Malakand,Department of Mathematics
[2] Yuzuncu Yil University,Department of Mathematics, Faculty of Sciences
关键词
-Metric spaces; common fixed points; weakly compatible maps; admissible mapping; non-linear quadratic integral equations; non-linear fractional differential equation; 47H09; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we modify L-cyclic (α,β)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )_s$$\end{document}-contractions and using this contraction, we prove fixed point theorems in the setting of b-metric spaces. As an application, we discuss the existence of a unique solution to non-linear fractional differential equation, 1cDσ(x(t))=f(t,x(t)),for allt∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ^{c}D^{\sigma }(x(t))=f(t,x(t)),\ \ \text {for all}\ \ t\in (0,1), \end{aligned}$$\end{document}with the integral boundary conditions, x(0)=0,x(1)=∫0ρx(r)dr,for allρ∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x(0)=0,\ \ x(1)=\int _{0}^{\rho }x(r)\mathrm{d}r,\ \ \text {for all}\ \rho \in (0,1), \end{aligned}$$\end{document}where x∈C(0,1,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in C(\left[ 0,1\right] ,\mathbb {R})$$\end{document}, cDα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{c}D^{\alpha }$$\end{document} denotes the Caputo fractional derivative of order σ∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (1,2]$$\end{document}, f:[0,1]×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : [0,1] \times \mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a continuous function. Furthermore, we established existence result of a unique common solution to the system of non-linear quadratic integral equations, x(t)=∫01H(t,τ)f1(τ,x(τ))dτ,for allt∈[0,1];x(t)=∫01H(t,τ)f2(τ,x(τ))dτ,for allt∈[0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{\left\{ \begin{array}{ll} x(t)&{}= \int _{0}^{1}H(t,\tau )f_{1}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1]; \\ x(t)&{}= \int _{0}^{1}H(t,\tau )f_{2}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1], \end{array}\right. } \end{aligned}$$\end{document}where H:0,1×0,1→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H : \left[ 0,1\right] \times \left[ 0,1\right] \rightarrow [0,\infty )$$\end{document} is continuous at t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} for every τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} and measurable at τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} for every t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} and f1,f2:0,1×R→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{1}, f_{2}: \left[ 0,1\right] \times \mathbb {R}\rightarrow [0,\infty )$$\end{document} are continuous functions.
引用
收藏
相关论文
共 50 条
  • [41] Some fixed point theorems in complex valued b-metric spaces
    Mukheimer, Aiman A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 115 - 125
  • [42] Some New Fixed Point Theorems in b-Metric Spaces with Application
    Alamri, Badriah A. S.
    P. Agarwal, Ravi
    Ahmad, Jamshaid
    MATHEMATICS, 2020, 8 (05)
  • [43] Fixed point theorems for operators with a contractive iterate in b-metric spaces
    Bota, Monica-Felicia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (04): : 435 - 442
  • [44] Geraghty and Ciric type fixed point theorems in b-metric spaces
    Pant, Rajendra
    Panicker, R.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (11): : 5741 - 5755
  • [45] Ciric Type Nonunique Fixed Point Theorems on b-Metric Spaces
    Alsulami, Hamed H.
    Karapinar, Erdal
    Rakocevic, Vladimir
    FILOMAT, 2017, 31 (11) : 3147 - 3156
  • [46] The class of -type contractions in b-metric spaces and fixed point theorems
    Samet, Bessem
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [47] Some fixed point theorems in complex valued b-metric spaces
    Mukheimer, Aiman A.
    Italian Journal of Pure and Applied Mathematics, 2019, (42): : 115 - 125
  • [48] Fixed point theorems on multi valued mappings in b-metric spaces
    Joseph, J. Maria
    Roselin, D. Dayana
    Marudai, M.
    SPRINGERPLUS, 2016, 5 : 1 - 8
  • [49] Some Fixed Point Theorems in Extended Cone b-Metric Spaces
    Das, Abhishikta
    Bag, T.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (02): : 647 - 659
  • [50] On Deformable Implicit Fractional Differential Equations in b-Metric Spaces
    Salim, A.
    Krim, S.
    Abbas, S.
    Benchohra, M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (01)