Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations

被引:0
|
作者
Mian Bahadur Zada
Muhammad Sarwar
Cemil Tunc
机构
[1] University of Malakand,Department of Mathematics
[2] Yuzuncu Yil University,Department of Mathematics, Faculty of Sciences
关键词
-Metric spaces; common fixed points; weakly compatible maps; admissible mapping; non-linear quadratic integral equations; non-linear fractional differential equation; 47H09; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we modify L-cyclic (α,β)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )_s$$\end{document}-contractions and using this contraction, we prove fixed point theorems in the setting of b-metric spaces. As an application, we discuss the existence of a unique solution to non-linear fractional differential equation, 1cDσ(x(t))=f(t,x(t)),for allt∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ^{c}D^{\sigma }(x(t))=f(t,x(t)),\ \ \text {for all}\ \ t\in (0,1), \end{aligned}$$\end{document}with the integral boundary conditions, x(0)=0,x(1)=∫0ρx(r)dr,for allρ∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x(0)=0,\ \ x(1)=\int _{0}^{\rho }x(r)\mathrm{d}r,\ \ \text {for all}\ \rho \in (0,1), \end{aligned}$$\end{document}where x∈C(0,1,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in C(\left[ 0,1\right] ,\mathbb {R})$$\end{document}, cDα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{c}D^{\alpha }$$\end{document} denotes the Caputo fractional derivative of order σ∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (1,2]$$\end{document}, f:[0,1]×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : [0,1] \times \mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a continuous function. Furthermore, we established existence result of a unique common solution to the system of non-linear quadratic integral equations, x(t)=∫01H(t,τ)f1(τ,x(τ))dτ,for allt∈[0,1];x(t)=∫01H(t,τ)f2(τ,x(τ))dτ,for allt∈[0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{\left\{ \begin{array}{ll} x(t)&{}= \int _{0}^{1}H(t,\tau )f_{1}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1]; \\ x(t)&{}= \int _{0}^{1}H(t,\tau )f_{2}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1], \end{array}\right. } \end{aligned}$$\end{document}where H:0,1×0,1→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H : \left[ 0,1\right] \times \left[ 0,1\right] \rightarrow [0,\infty )$$\end{document} is continuous at t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} for every τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} and measurable at τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} for every t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} and f1,f2:0,1×R→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{1}, f_{2}: \left[ 0,1\right] \times \mathbb {R}\rightarrow [0,\infty )$$\end{document} are continuous functions.
引用
收藏
相关论文
共 50 条
  • [21] Fixed point theorems of contractive mappings in cone b-metric spaces and applications
    Huaping Huang
    Shaoyuan Xu
    Fixed Point Theory and Applications, 2013
  • [22] SOME COUPLED FIXED POINT THEOREMS ON ORTHOGONAL b-METRIC SPACES WITH APPLICATIONS
    Babu, Dasari Ratna
    Chander, K. Bhanu
    Prasad, N. Siva
    Asha, Shaik
    Babu, E. Sundesh
    Kumar, T. V. Pradeep
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 16 (03): : 45 - 61
  • [23] Common Fixed Point Theorems for Contractive Mappings of Integral Type in b-Metric Spaces
    Guan, Hongyan
    Gou, Jinze
    MATHEMATICAL NOTES, 2024, 115 (3-4) : 538 - 554
  • [24] New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
    Alnaser, Laila A.
    Ahmad, Jamshaid
    Lateef, Durdana
    Fouad, Hoda A.
    SYMMETRY-BASEL, 2019, 11 (05):
  • [25] Existence of a solution of fractional differential equations using the fixed point technique in extended b-metric spaces
    Bota, Monica-Felicia
    Guran, Liliana
    AIMS MATHEMATICS, 2022, 7 (01): : 518 - 535
  • [26] FIXED POINT THEOREMS FOR NONSELF OPERATORS IN b-METRIC SPACES
    Bota, Monica-Felicia
    Ilea, Veronica
    FIXED POINT THEORY, 2015, 16 (02): : 225 - 232
  • [27] Multivalued fixed point theorems in cone b-metric spaces
    Akbar Azam
    Nayyar Mehmood
    Jamshaid Ahmad
    Stojan Radenović
    Journal of Inequalities and Applications, 2013
  • [28] SOME FIXED POINT THEOREMS IN EXTENDED b-METRIC SPACES
    Shatanawi, Wasfi
    Abodayeh, Kamaleldin
    Mukheimer, Aiman
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 71 - 78
  • [29] Multivalued fixed point theorems in cone b-metric spaces
    Azam, Akbar
    Mehmood, Nayyar
    Ahmad, Jamshaid
    Radenovic, Stojan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [30] Fixed point theorems for generalized α-ψ-contractive mappings in extended b-metric spaces with applications
    Abdou, Afrah A. N.
    Alasmari, Maryam F. S.
    AIMS MATHEMATICS, 2021, 6 (06): : 5465 - 5478