Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations

被引:0
|
作者
Mian Bahadur Zada
Muhammad Sarwar
Cemil Tunc
机构
[1] University of Malakand,Department of Mathematics
[2] Yuzuncu Yil University,Department of Mathematics, Faculty of Sciences
关键词
-Metric spaces; common fixed points; weakly compatible maps; admissible mapping; non-linear quadratic integral equations; non-linear fractional differential equation; 47H09; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we modify L-cyclic (α,β)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )_s$$\end{document}-contractions and using this contraction, we prove fixed point theorems in the setting of b-metric spaces. As an application, we discuss the existence of a unique solution to non-linear fractional differential equation, 1cDσ(x(t))=f(t,x(t)),for allt∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ^{c}D^{\sigma }(x(t))=f(t,x(t)),\ \ \text {for all}\ \ t\in (0,1), \end{aligned}$$\end{document}with the integral boundary conditions, x(0)=0,x(1)=∫0ρx(r)dr,for allρ∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x(0)=0,\ \ x(1)=\int _{0}^{\rho }x(r)\mathrm{d}r,\ \ \text {for all}\ \rho \in (0,1), \end{aligned}$$\end{document}where x∈C(0,1,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in C(\left[ 0,1\right] ,\mathbb {R})$$\end{document}, cDα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{c}D^{\alpha }$$\end{document} denotes the Caputo fractional derivative of order σ∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (1,2]$$\end{document}, f:[0,1]×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : [0,1] \times \mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a continuous function. Furthermore, we established existence result of a unique common solution to the system of non-linear quadratic integral equations, x(t)=∫01H(t,τ)f1(τ,x(τ))dτ,for allt∈[0,1];x(t)=∫01H(t,τ)f2(τ,x(τ))dτ,for allt∈[0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{\left\{ \begin{array}{ll} x(t)&{}= \int _{0}^{1}H(t,\tau )f_{1}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1]; \\ x(t)&{}= \int _{0}^{1}H(t,\tau )f_{2}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1], \end{array}\right. } \end{aligned}$$\end{document}where H:0,1×0,1→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H : \left[ 0,1\right] \times \left[ 0,1\right] \rightarrow [0,\infty )$$\end{document} is continuous at t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} for every τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} and measurable at τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} for every t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} and f1,f2:0,1×R→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{1}, f_{2}: \left[ 0,1\right] \times \mathbb {R}\rightarrow [0,\infty )$$\end{document} are continuous functions.
引用
收藏
相关论文
共 50 条
  • [31] Fixed Point Theorems for Geraghty Contraction Type Mappings in b-Metric Spaces and Applications
    Faraji, Hamid
    Savic, Dragana
    Radenovic, Stojan
    AXIOMS, 2019, 8 (01)
  • [32] FIXED POINT THEOREMS FOR GENERALIZED (αη)EB -CONTRACTIONS IN EXTENDED B-METRIC SPACES WITH APPLICATIONS
    Alasmari, Maryam F. S.
    Abdou, Afrah A. N.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 12 (04): : 15 - 31
  • [33] Fixed Point Theorems Over Extended (φ, ψ)-Metric Spaces and Applications in Differential Equations
    Taleb, Mohammed M. A.
    Al-Salehi, Saeed A. A.
    Borkar, V. C.
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [34] Common fixed point theorems for multivalued mappings in b-metric spaces with an application to integral inclusions
    Aliouche, Abdelkrim
    Hamaizia, Taieb
    JOURNAL OF ANALYSIS, 2022, 30 (01): : 43 - 62
  • [35] Fixed Point and Common Fixed Point Theorems on Ordered Cone b-Metric Spaces
    Abusalim, Sahar Mohammad
    Noorani, Mohd Salmi Md
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [36] Common fixed point theorems for multivalued mappings in b-metric spaces with an application to integral inclusions
    Abdelkrim Aliouche
    Taieb Hamaizia
    The Journal of Analysis, 2022, 30 : 43 - 62
  • [37] Existence of the Solutions of Nonlinear Fractional Differential Equations Using the Fixed Point Technique in Extended b-Metric Spaces
    Guran, Liliana
    Bota, Monica-Felicia
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 11
  • [38] Common fixed point theorems in complex partial b-metric space with an application to integral equations
    Mani, Gunaseelan
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, 15 (01): : 129 - 149
  • [39] Applications to Integral Equations with Coupled Fixed Point Theorems in A(b)-Metric Space
    Ravibabu, K.
    Rao, Ch. Srinivasa
    Naidu, Ch. Raghavendra
    THAI JOURNAL OF MATHEMATICS, 2018, 16 : 148 - 167
  • [40] Fixed Point Results via α-Admissibility in Extended Fuzzy Rectangular b-Metric Spaces with Applications to Integral Equations
    Badshah-e-Rome
    Sarwar, Muhammad
    Rodriguez-Lopez, Rosana
    MATHEMATICS, 2021, 9 (16)