Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations

被引:0
|
作者
Mian Bahadur Zada
Muhammad Sarwar
Cemil Tunc
机构
[1] University of Malakand,Department of Mathematics
[2] Yuzuncu Yil University,Department of Mathematics, Faculty of Sciences
关键词
-Metric spaces; common fixed points; weakly compatible maps; admissible mapping; non-linear quadratic integral equations; non-linear fractional differential equation; 47H09; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we modify L-cyclic (α,β)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )_s$$\end{document}-contractions and using this contraction, we prove fixed point theorems in the setting of b-metric spaces. As an application, we discuss the existence of a unique solution to non-linear fractional differential equation, 1cDσ(x(t))=f(t,x(t)),for allt∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ^{c}D^{\sigma }(x(t))=f(t,x(t)),\ \ \text {for all}\ \ t\in (0,1), \end{aligned}$$\end{document}with the integral boundary conditions, x(0)=0,x(1)=∫0ρx(r)dr,for allρ∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x(0)=0,\ \ x(1)=\int _{0}^{\rho }x(r)\mathrm{d}r,\ \ \text {for all}\ \rho \in (0,1), \end{aligned}$$\end{document}where x∈C(0,1,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in C(\left[ 0,1\right] ,\mathbb {R})$$\end{document}, cDα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{c}D^{\alpha }$$\end{document} denotes the Caputo fractional derivative of order σ∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (1,2]$$\end{document}, f:[0,1]×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : [0,1] \times \mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a continuous function. Furthermore, we established existence result of a unique common solution to the system of non-linear quadratic integral equations, x(t)=∫01H(t,τ)f1(τ,x(τ))dτ,for allt∈[0,1];x(t)=∫01H(t,τ)f2(τ,x(τ))dτ,for allt∈[0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{\left\{ \begin{array}{ll} x(t)&{}= \int _{0}^{1}H(t,\tau )f_{1}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1]; \\ x(t)&{}= \int _{0}^{1}H(t,\tau )f_{2}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1], \end{array}\right. } \end{aligned}$$\end{document}where H:0,1×0,1→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H : \left[ 0,1\right] \times \left[ 0,1\right] \rightarrow [0,\infty )$$\end{document} is continuous at t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} for every τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} and measurable at τ∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \left[ 0,1\right] $$\end{document} for every t∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ 0,1\right] $$\end{document} and f1,f2:0,1×R→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{1}, f_{2}: \left[ 0,1\right] \times \mathbb {R}\rightarrow [0,\infty )$$\end{document} are continuous functions.
引用
收藏
相关论文
共 50 条
  • [1] Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations
    Zada, Mian Bahadur
    Sarwar, Muhammad
    Tunc, Cemil
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [2] Fixed point theorems in b-metric spaces with applications to differential equations
    Huaping Huang
    Guantie Deng
    Stojan Radenović
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [3] Fixed point theorems in b-metric spaces with applications to differential equations
    Huang, Huaping
    Deng, Guantie
    Radenovic, Stojan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [4] Fixed Point Theorems for Multi-Valued Contractions in b-Metric Spaces With Applications to Fractional Differential and Integral Equations
    Shoaib, Muhammad
    Abdeljawad, Thabet
    Sarwar, Muhammad
    Jarad, Fahd
    IEEE ACCESS, 2019, 7 : 127373 - 127383
  • [5] Fixed point results in b-metric spaces with applications to integral equations
    Alamri, Badriah
    Ahmad, Jamshaid
    AIMS MATHEMATICS, 2023, 8 (04): : 9443 - 9460
  • [6] Intuitionistic Fuzzy Fixed Point Theorems in Complex-Valued b-Metric Spaces with Applications to Fractional Differential Equations
    Tabassum, Rehana
    Shagari, Mohammed Shehu
    Azam, Akbar
    Mohamed, O. M. Kalthum S. K.
    Bakery, Awad A.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [7] FIXED POINT AND COINCIDENCE POINT THEOREMS IN b-METRIC SPACES WITH APPLICATIONS
    Petrusel, Adrian
    Petrusel, Gabriela
    Yao, Jen-Chih
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (01) : 199 - 215
  • [8] COMMON FIXED POINT THEOREMS IN C*-ALGEBRA-VALUED B-METRIC SPACES WITH APPLICATIONS TO INTEGRAL EQUATIONS
    Razavi, S. S.
    Masiha, H. P.
    FIXED POINT THEORY, 2019, 20 (02): : 649 - 662
  • [9] Solving Integral Equations by Common Fixed Point Theorems on Complex Partial b-Metric Spaces
    Gnanaprakasam, Arul Joseph
    Boulaaras, Salah Mahmoud
    Mani, Gunaseelan
    Abdalla, Mohamed
    Alharbi, Asma
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [10] FIXED POINT THEOREMS IN COMPLEX VALUED FUZZY b-METRIC SPACES WITH APPLICATION TO INTEGRAL EQUATIONS
    Demir, Izzettin
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 153 - 171