A note on orientation and chromatic number of graphs

被引:0
|
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 50 条
  • [31] The Robust Chromatic Number of Graphs
    Bacso, Gabor
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [32] On the harmonious chromatic number of graphs
    Araujo-Pardo, Gabriela
    Montellano-Ballesteros, Juan Jose
    Olsen, Mika
    Rubio-Montiel, Christian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [33] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [34] On the strong chromatic number of graphs
    Axenovich, Maria
    Martin, Ryan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (03) : 741 - 747
  • [35] Chromatic Number and Hamiltonicity of Graphs
    Li, Rao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 113 : 253 - 257
  • [36] Chromatic number and subtrees of graphs
    Xu, Baogang
    Zhang, Yingli
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 441 - 457
  • [37] The chromatic number of oriented graphs
    Sopena, E
    JOURNAL OF GRAPH THEORY, 1997, 25 (03) : 191 - 205
  • [38] COMPLEMENTARY GRAPHS AND THE CHROMATIC NUMBER
    Starr, Colin L.
    Turner, Galen E., III
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2008, 20 (01) : 19 - 26
  • [39] CHROMATIC NUMBER OF SKEW GRAPHS
    PAHLINGS, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (03) : 303 - 306
  • [40] On Indicated Chromatic Number of Graphs
    Raj, S. Francis
    Raj, R. Pandiya
    Patil, H. P.
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 203 - 219