A note on orientation and chromatic number of graphs

被引:0
|
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 50 条
  • [41] On the chromatic number of tree graphs
    Estivill-Castro, V
    Noy, M
    Urrutia, J
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 363 - 366
  • [42] ON THE DYNAMIC CHROMATIC NUMBER OF GRAPHS
    Akbari, S.
    Ghanbari, M.
    Jahanbekam, S.
    COMBINATORICS AND GRAPHS, 2010, 531 : 11 - +
  • [43] On the chromatic number of disk graphs
    Malesinska, E
    Piskorz, S
    Weissenfels, G
    NETWORKS, 1998, 32 (01) : 13 - 22
  • [44] On the injective chromatic number of graphs
    Hahn, G
    Kratochvíl, J
    Sirán, J
    Sotteau, D
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 179 - 192
  • [45] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495
  • [46] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [47] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [48] On incompactness for chromatic number of graphs
    Saharon Shelah
    Acta Mathematica Hungarica, 2013, 139 : 363 - 371
  • [49] On the chromatic number of circulant graphs
    Barajas, Javier
    Serra, Oriol
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5687 - 5696
  • [50] On Group Chromatic Number of Graphs
    Hong-Jian Lai
    Xiangwen Li
    Graphs and Combinatorics, 2005, 21 : 469 - 474