Chromatic Number and Hamiltonicity of Graphs

被引:0
|
作者
Li, Rao [1 ]
机构
[1] Dept. of Mathematical Sciences, University of South Carolina Aiken, Aiken,SC,29801, United States
关键词
D O I
暂无
中图分类号
O144 [集合论]; O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
Let G be a k-connected (k > 2) graph of order n. If > n-k} then G is Hamiltonian or Kk V U Kn-2k) with n > 2k +1, where X(G) is the chromatic number of the graph G. © 2020 Charles Babbage Research Centre. All rights reserved.
引用
收藏
页码:253 / 257
相关论文
共 50 条
  • [1] Hamiltonicity of edge chromatic critical graphs
    Chen, Guantao
    Chen, Xiaodong
    Zhao, Yue
    DISCRETE MATHEMATICS, 2017, 340 (12) : 3011 - 3015
  • [2] Hamiltonicity of edge-chromatic critical graphs
    Cao, Yan
    Chen, Guantao
    Jiang, Suyun
    Liu, Huiqing
    Lu, Fuliang
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [3] The matching number and Hamiltonicity of graphs
    Li, Rao
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1094 - 1095
  • [4] Domination Number and Hamiltonicity of Graphs
    Li, Rao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 111 : 279 - 282
  • [5] On the chromatic number of graphs
    Butenko, S
    Festa, P
    Pardalos, PM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (01) : 51 - 67
  • [6] On the Chromatic Number of Graphs
    S. Butenko
    P. Festa
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2001, 109 (1) : 69 - 83
  • [7] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [8] The difference between game chromatic number and chromatic number of graphs
    Matsumoto, Naoki
    INFORMATION PROCESSING LETTERS, 2019, 151
  • [9] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    Combinatorica, 1999, 19 : 139 - 149
  • [10] On the difference between chromatic number and dynamic chromatic number of graphs
    Ahadi, A.
    Akbari, S.
    Dehghan, A.
    Ghanbari, M.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2579 - 2583