On the Diophantine equation x2 − kxy + y2 − 2n = 0

被引:0
|
作者
Refik Keskin
Zafer Şiar
Olcay Karaatli
机构
[1] Sakarya University,
[2] Bilecik Şeyh Edebali University,undefined
[3] Sakarya University,undefined
来源
关键词
Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; 11B37; 11B39; 11B50; 11B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we determine when the Diophantine equation x2−kxy+y2−2n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x2 − kxy + y2 − 2n = 0.
引用
收藏
页码:783 / 797
页数:14
相关论文
共 50 条
  • [21] Quadratic Diophantine Equation x2 - (t2 - t)y2 - (4t-2)x + (4t2-4t)y=0
    Ozkoc, Arzu
    Tekcan, Ahmet
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (02) : 273 - 280
  • [22] On the diophantine equation x2 − Dy2 = n
    DaSheng Wei
    Science China Mathematics, 2013, 56 : 227 - 238
  • [23] THE DIOPHANTINE EQUATION (bn)x + (2n)y = ((b+2)n)z
    Tang, Min
    Yang, Quan-Hui
    COLLOQUIUM MATHEMATICUM, 2013, 132 (01) : 95 - 100
  • [24] ON THE DIOPHANTINE EQUATION x2
    Alan, Murat
    Aydin, Mustafa
    ARCHIVUM MATHEMATICUM, 2023, 59 (05): : 411 - 420
  • [25] The Diophantine equation x2
    Nguyen Xuan Tho
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 121 - 139
  • [26] Diophantine approximation with one prime of the form p = x2 + y2 + 1
    Stoyan Ivanov Dimitrov
    Lithuanian Mathematical Journal, 2021, 61 : 445 - 459
  • [27] THE DIOPHANTINE EQUATION X2+7=2N
    JOHNSON, W
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 59 - 62
  • [28] On the diophantine equation y2 = Πi≤8(x + ki)
    Srikanth, R.
    Subburam, S.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04):
  • [29] On the diophantine equation x2 + 2 = yn
    Sury B.
    Archiv der Mathematik, 2000, 74 (5) : 350 - 355
  • [30] THE DIOPHANTINE EQUATION X3+3Y3=2N
    TZANAKIS, N
    JOURNAL OF NUMBER THEORY, 1982, 15 (03) : 376 - 387