On the Diophantine equation x2 − kxy + y2 − 2n = 0

被引:0
|
作者
Refik Keskin
Zafer Şiar
Olcay Karaatli
机构
[1] Sakarya University,
[2] Bilecik Şeyh Edebali University,undefined
[3] Sakarya University,undefined
来源
关键词
Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; 11B37; 11B39; 11B50; 11B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we determine when the Diophantine equation x2−kxy+y2−2n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x2 − kxy + y2 − 2n = 0.
引用
收藏
页码:783 / 797
页数:14
相关论文
共 50 条
  • [31] On the Diophantine equations (2n - 1) (6n - 1) = x2 and (an - 1) (akn - 1) = x2
    Hajdu L.
    Szalay L.
    Periodica Mathematica Hungarica, 2000, 40 (2) : 141 - 145
  • [32] ON THE DIOPHANTINE EQUATION h(a)x2
    Berbara, Nacira
    Kihel, Omar
    Mavecha, Sukrawan
    Midgley, Joel
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 61 (02) : 201 - 206
  • [33] Solving the Diophantine equation y2=x(x2-n2) (vol 129, pg 102, 2009)
    Draziotis, Konstantinos
    Poulakis, Dimitrios
    JOURNAL OF NUMBER THEORY, 2009, 129 (03) : 739 - 740
  • [34] An Exponential Diophantine Equation x2
    Muthuvel, S.
    Venkatraman, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1125 - 1128
  • [35] ON THE EXPONENTIAL DIOPHANTINE EQUATION x2
    Asthana, Shivangi
    Singh, Madan Mohan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 44 (01): : 15 - 30
  • [36] Solutions to the Diophantine Equation x2
    Yow, Kai Siong
    Sapar, Siti Hasana
    Low, Cheng Yaw
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (04): : 489 - 496
  • [37] Diophantine equation x(2)+2(m)=y(n)
    Le, MH
    CHINESE SCIENCE BULLETIN, 1997, 42 (18): : 1515 - 1517
  • [38] FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF x2 + y2 = z3
    Komatsu, Takao
    Gupta, Neha
    Upreti, Manoj
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [39] Diophantine equation x~2 + 2~m =y~n
    LE MaohuaDepartment of Mathematics
    ChineseScienceBulletin, 1997, (18) : 1515 - 1517
  • [40] A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4
    Gary Walsh
    Archiv der Mathematik, 1999, 73 : 119 - 125