Quadratic Diophantine Equation x2 - (t2 - t)y2 - (4t-2)x + (4t2-4t)y=0

被引:0
|
作者
Ozkoc, Arzu [1 ]
Tekcan, Ahmet [1 ]
机构
[1] Uludag Univ, Fac Sci, Dept Math, TR-16059 Gorukle, Bursa, Turkey
关键词
Diophantine equation; Pell equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let t >= 2 be an integer. In this work, we consider the number of integer solutions of Diophantine equation D : x(2) - (t(2) - t)y(2) - (4t - 2)x + (4t(2) - 4t)y = 0 over Z. We also derive some recurrence relations on the integer solutions (x(n), y(n)) of D. In the last, section, we consider the same problem over finite fields F-p for primes p >= 5.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 50 条