On the Diophantine equation (x2 ± C)(y2 ± D) = z4

被引:1
|
作者
Yuan, Pingzhi [2 ]
Luo, Jiagui [1 ]
机构
[1] Zhaoqing Univ, Coll Math & Informat Sci, Zhaoqing 526061, Peoples R China
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
关键词
Diophantine equations; Lehmer sequences; LEHMER SEQUENCES; SQUARES; FAMILY;
D O I
10.4064/aa144-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:69 / 95
页数:27
相关论文
共 50 条
  • [2] On ternary biquadratic Diophantine equation 11(x2 - y2)
    Vidhyalakshmi, S.
    Gopalan, M. A.
    Thangam, S. A.
    Ozer, O.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (03) : 65 - 71
  • [3] On the Diophantine equation x2 − kxy + y2 + lx = 0
    Yongzhong Hu
    Maohua Le
    Chinese Annals of Mathematics, Series B, 2013, 34 : 715 - 718
  • [4] Solving the Diophantine equation y2 = x(x2 - n2)
    Draziotis, Konstantinos
    Poulakis, Dimitrios
    JOURNAL OF NUMBER THEORY, 2009, 129 (01) : 102 - 121
  • [5] On the Diophantine equation x2 − kxy + y2 − 2n = 0
    Refik Keskin
    Zafer Şiar
    Olcay Karaatli
    Czechoslovak Mathematical Journal, 2013, 63 : 783 - 797
  • [6] On the Diophantine equation x2 - kxy + y2 + lx=0, l ∈ {1,2,4}
    Yuan, Pingzhi
    Hu, Yongzhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (03) : 573 - 577
  • [7] FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF x2 + y2 = z3
    Komatsu, Takao
    Gupta, Neha
    Upreti, Manoj
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [8] On the diophantine equation 2(a)X(4)+2(b)Y(4)=2(c)Z(4)
    Suzuki, Y
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (04) : 92 - 94
  • [9] ON THE DIOPHANTINE EQUATION Z(2) = X(4)+DX(2)Y(2)+Y(4)
    COHN, JHE
    GLASGOW MATHEMATICAL JOURNAL, 1994, 36 : 283 - 285
  • [10] The Diophantine equation x2 - (t2 + t)y2 - (4t+2)x + (4t2+4t)y=0
    Tekcan, Ahmet
    Ozkoc, Arzu
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 251 - 260