A posteriori error estimates for Radau IIA methods via maximal parabolic regularity

被引:0
|
作者
Georgios Akrivis
Charalambos G. Makridakis
机构
[1] University of Ioannina,Department of Computer Science and Engineering
[2] Institute of Applied and Computational Mathematics,Modeling and Scientific Computing, Department of Mathematics and Applied Mathematics
[3] FORTH,undefined
[4] University of Crete / Institute of Applied and Computational Mathematics,undefined
[5] FORTH,undefined
[6] MPS,undefined
[7] University of Sussex,undefined
来源
Numerische Mathematik | 2022年 / 150卷
关键词
A posteriori error estimates; Maximal parabolic regularity; Discrete maximal parabolic regularity; Radau IIA methods; 65M15; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discretization of differential equations satisfying the maximal parabolic Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-regularity property in Banach spaces by Radau IIA methods. We establish a posteriori error estimators via the maximal parabolic regularity of the differential equation. To complete the picture, we utilize the maximal parabolic regularity of the numerical methods to prove that the estimators are of optimal order.
引用
收藏
页码:691 / 717
页数:26
相关论文
共 50 条
  • [41] Posteriori error estimates for adaptive boundary element methods
    Jin, Chaosong
    Chongqing Jianzhu Daxue Xuebao/Journal of Chongqing Jianzhu University, 2000, 22 (06): : 16 - 19
  • [42] Regularity and Rothe method error estimates for parabolic hemivariational inequality
    Kalita, Piotr
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 618 - 631
  • [43] Superconvergence and a posteriori error estimates in finite element methods
    Chen, Chuanmiao
    Shi, Zhong-Ci
    Xie, Ziqing
    Zhang, Zhimin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (03)
  • [44] A posteriori error estimates for nonconforming finite element methods
    Carstensen, C
    Bartels, S
    Jansche, S
    NUMERISCHE MATHEMATIK, 2002, 92 (02) : 233 - 256
  • [45] A posteriori error estimates for nonconforming finite element methods
    Carsten Carstensen
    Sören Bartels
    Stefan Jansche
    Numerische Mathematik, 2002, 92 : 233 - 256
  • [46] A POSTERIORI ERROR ESTIMATES FOR MULTILEVEL METHODS FOR GRAPH LAPLACIANS
    Hu, Xiaozhe
    Wu, Kaiyi
    Zikatanov, Ludmil T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S727 - S742
  • [47] Local a posteriori error estimates for boundary element methods
    Schulz, H
    Wendland, WL
    ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 564 - 571
  • [48] Functional a posteriori error estimates for boundary element methods
    Stefan Kurz
    Dirk Pauly
    Dirk Praetorius
    Sergey Repin
    Daniel Sebastian
    Numerische Mathematik, 2021, 147 : 937 - 966
  • [49] Functional a posteriori error estimates for boundary element methods
    Kurz, Stefan
    Pauly, Dirk
    Praetorius, Dirk
    Repin, Sergey
    Sebastian, Daniel
    NUMERISCHE MATHEMATIK, 2021, 147 (04) : 937 - 966
  • [50] A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Virtanen, Juha M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 427 - 458