A POSTERIORI ERROR ESTIMATES FOR MULTILEVEL METHODS FOR GRAPH LAPLACIANS

被引:3
|
作者
Hu, Xiaozhe [1 ]
Wu, Kaiyi [1 ]
Zikatanov, Ludmil T. [2 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 05期
基金
美国国家科学基金会;
关键词
graph Laplacian; a posteriori error estimates; cycle space; spanning tree; Helmholtz decomposition; AGGREGATION ALPHA-SA; MULTIGRID METHOD; CONVERGENCE; NETWORKS; VECTOR; BOUNDS;
D O I
10.1137/20M1349618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a posteriori error estimators which aid multilevel iterative solvers for linear systems of graph Laplacians. In earlier works such estimates were computed by solving a perturbed global optimization problem, which could be computationally expensive. We propose a novel strategy to compute these estimates by constructing a Helmholtz decomposition on the graph based on a spanning tree and the corresponding cycle space. To compute the error estimator, we solve a linear system efficiently on the spanning tree and then a least-squares problem on the cycle space. As we show, such an estimator has a nearly linear computational complexity for sparse graphs under certain assumptions. Numerical experiments are presented to demonstrate the efficacy of the proposed method.
引用
收藏
页码:S727 / S742
页数:16
相关论文
共 50 条
  • [1] A Posteriori Error Estimates for HDG Methods
    Bernardo Cockburn
    Wujun Zhang
    Journal of Scientific Computing, 2012, 51 : 582 - 607
  • [2] A Posteriori Error Estimates for HDG Methods
    Cockburn, Bernardo
    Zhang, Wujun
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 51 (03) : 582 - 607
  • [3] A posteriori error estimates of finite element methods by preconditioning
    Li, Yuwen
    Zikatanov, Ludmil
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 192 - 201
  • [4] Posteriori error estimates for adaptive boundary element methods
    Jin, Chaosong
    Chongqing Jianzhu Daxue Xuebao/Journal of Chongqing Jianzhu University, 2000, 22 (06): : 16 - 19
  • [5] Superconvergence and a posteriori error estimates in finite element methods
    Chen, Chuanmiao
    Shi, Zhong-Ci
    Xie, Ziqing
    Zhang, Zhimin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (03)
  • [6] A posteriori error estimates for nonconforming finite element methods
    Carstensen, C
    Bartels, S
    Jansche, S
    NUMERISCHE MATHEMATIK, 2002, 92 (02) : 233 - 256
  • [7] A posteriori error estimates for nonconforming finite element methods
    Carsten Carstensen
    Sören Bartels
    Stefan Jansche
    Numerische Mathematik, 2002, 92 : 233 - 256
  • [8] Local a posteriori error estimates for boundary element methods
    Schulz, H
    Wendland, WL
    ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 564 - 571
  • [9] Functional a posteriori error estimates for boundary element methods
    Stefan Kurz
    Dirk Pauly
    Dirk Praetorius
    Sergey Repin
    Daniel Sebastian
    Numerische Mathematik, 2021, 147 : 937 - 966
  • [10] Functional a posteriori error estimates for boundary element methods
    Kurz, Stefan
    Pauly, Dirk
    Praetorius, Dirk
    Repin, Sergey
    Sebastian, Daniel
    NUMERISCHE MATHEMATIK, 2021, 147 (04) : 937 - 966