A posteriori error estimates for Radau IIA methods via maximal parabolic regularity

被引:0
|
作者
Georgios Akrivis
Charalambos G. Makridakis
机构
[1] University of Ioannina,Department of Computer Science and Engineering
[2] Institute of Applied and Computational Mathematics,Modeling and Scientific Computing, Department of Mathematics and Applied Mathematics
[3] FORTH,undefined
[4] University of Crete / Institute of Applied and Computational Mathematics,undefined
[5] FORTH,undefined
[6] MPS,undefined
[7] University of Sussex,undefined
来源
Numerische Mathematik | 2022年 / 150卷
关键词
A posteriori error estimates; Maximal parabolic regularity; Discrete maximal parabolic regularity; Radau IIA methods; 65M15; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discretization of differential equations satisfying the maximal parabolic Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-regularity property in Banach spaces by Radau IIA methods. We establish a posteriori error estimators via the maximal parabolic regularity of the differential equation. To complete the picture, we utilize the maximal parabolic regularity of the numerical methods to prove that the estimators are of optimal order.
引用
收藏
页码:691 / 717
页数:26
相关论文
共 50 条