A posteriori error estimates for Radau IIA methods via maximal parabolic regularity

被引:0
|
作者
Georgios Akrivis
Charalambos G. Makridakis
机构
[1] University of Ioannina,Department of Computer Science and Engineering
[2] Institute of Applied and Computational Mathematics,Modeling and Scientific Computing, Department of Mathematics and Applied Mathematics
[3] FORTH,undefined
[4] University of Crete / Institute of Applied and Computational Mathematics,undefined
[5] FORTH,undefined
[6] MPS,undefined
[7] University of Sussex,undefined
来源
Numerische Mathematik | 2022年 / 150卷
关键词
A posteriori error estimates; Maximal parabolic regularity; Discrete maximal parabolic regularity; Radau IIA methods; 65M15; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discretization of differential equations satisfying the maximal parabolic Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-regularity property in Banach spaces by Radau IIA methods. We establish a posteriori error estimators via the maximal parabolic regularity of the differential equation. To complete the picture, we utilize the maximal parabolic regularity of the numerical methods to prove that the estimators are of optimal order.
引用
收藏
页码:691 / 717
页数:26
相关论文
共 50 条
  • [1] A posteriori error estimates for Radau IIA methods via maximal parabolic regularity
    Akrivis, Georgios
    Makridakis, Charalambos G.
    NUMERISCHE MATHEMATIK, 2022, 150 (03) : 691 - 717
  • [2] A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces
    E. Cuesta
    Ch. Makridakis
    Numerische Mathematik, 2008, 110 : 257 - 275
  • [3] A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces
    Cuesta, E.
    Makridakis, Ch.
    NUMERISCHE MATHEMATIK, 2008, 110 (03) : 257 - 275
  • [4] A POSTERIORI ERROR ESTIMATES OF MIXED METHODS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Chen, Yanping
    Liu, Lingli
    Lu, Zuliang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) : 1135 - 1157
  • [5] A Posteriori Error Estimates for Parabolic Variational Inequalities
    Yves Achdou
    Frédéric Hecht
    David Pommier
    Journal of Scientific Computing, 2008, 37 : 336 - 366
  • [6] A Posteriori Error Estimates for Parabolic Variational Inequalities
    Achdou, Yves
    Hecht, Frederic
    Pommier, David
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (03) : 336 - 366
  • [7] A posteriori error estimates of the weak Galerkin finite element methods for parabolic problems
    Dai, Jiajia
    Chen, Luoping
    Yang, Miao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 445
  • [8] A Posteriori Error Estimates for HDG Methods
    Bernardo Cockburn
    Wujun Zhang
    Journal of Scientific Computing, 2012, 51 : 582 - 607
  • [9] A Posteriori Error Estimates for HDG Methods
    Cockburn, Bernardo
    Zhang, Wujun
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 51 (03) : 582 - 607
  • [10] A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS
    Demlow, Alan
    Lakkis, Omar
    Makridakis, Charalambos
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2157 - 2176