A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces

被引:10
|
作者
Cuesta, E. [2 ]
Makridakis, Ch. [1 ,3 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[2] Univ Valladolid, Dept Appl Math, EUP, Valladolid 47014, Spain
[3] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
关键词
D O I
10.1007/s00211-008-0165-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimates are provided for discretizations in time of abstract nonlinear parabolic problems u' = F(u), by the backward Euler method in the maximal regularity framework of Banach spaces. The estimates are of conditional type, i.e., are valid under assumptions on the approximate solution, and the proofs are based on appropriate fixed point arguments.
引用
收藏
页码:257 / 275
页数:19
相关论文
共 50 条