n-Ary k-absorbing hyperideals in krasner (m, n)-hyperrings

被引:0
|
作者
A. Yassine
M. J. Nikmehr
R. Nikandish
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] Jundi-Shapur University of Technology,Department of Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
Krasner (; , ; )-hyperrings; -ary ; -absorbing hyperideals; -ary prime hyperideals; -ary 2-absorbing hyperideals; 16Y99; 20N20;
D O I
暂无
中图分类号
学科分类号
摘要
Let (R, f, g) be a commutative Krasner (m, n)-hyperring with the scalar identity 1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1_R$$\end{document} and k(<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<n$$\end{document}) be a positive integer. In this paper, the concept of n-ary k-absorbing hyperideal of R, as a generalization of n-ary prime hyperideal, is introduced and some related properties are investigated. A proper hyperideal I of R is called n-ary k-absorbing if whenever g(x1n)∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x_1^n) \in I$$\end{document} for x1n∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1^n \in R$$\end{document}, then there are k of the xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}’s whose g-product is in I. It is proved that the radical of an n-ary k-absorbing hyperideal I is an n-ary k-absorbing hyperideal and g(x(k),1R(n-k))∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x^{(k)}, 1_R^{(n-k)}) \in I$$\end{document} for each x∈I(m,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \sqrt{I}^{(m,n)}$$\end{document}. Among other things, we show that n-ary k-absorbing hyperideal has at most k minimal n-ary prime hyperideals. Finally, the notion of the n-ary hyperideal quotient Ix\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_x$$\end{document}, where x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}, is introduced and studied.
引用
收藏
相关论文
共 50 条
  • [41] Direct and semidirect product of n-ary polygroups via n-ary factor polygroups
    Shehu, Lumnije
    Davvaz, Bijan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (05)
  • [42] N-ary trees classifier
    Duque, Duarte
    Santos, Henrique
    Cortez, Paulo
    ICINCO 2006: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS: ROBOTICS AND AUTOMATION, 2006, : 457 - 460
  • [43] On identities of an n-ary group
    Gal'mak, A. M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2016, 9 (02)
  • [44] On reducibility of n-ary quasigroups
    Krotov, Denis S.
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5289 - 5297
  • [45] Notes on n-Ary Theories
    Zambarnaya, T. S.
    Baizhanov, B. S.
    MATHEMATICAL NOTES, 2024, 115 (3-4) : 647 - 649
  • [46] Construction of composition (m, n, k)-hyperrings
    Davvaz, B.
    Rakhsh-Khorshid, N.
    Shum, K. P.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01): : 177 - 188
  • [47] Hypergroups and n-ary relations
    Cristea, Irina
    Stefanescu, Mirela
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 780 - 789
  • [48] Fuzzy n-ary hypergroups
    Davvaz, B.
    Corsini, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2007, 18 (04) : 377 - 382
  • [49] Automorphisms of n-Ary Groups
    Dudek, Wieslaw A.
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [50] Automorphisms of n-Ary Groups
    Wieslaw A. Dudek
    Results in Mathematics, 2022, 77