n-Ary k-absorbing hyperideals in krasner (m, n)-hyperrings

被引:0
|
作者
A. Yassine
M. J. Nikmehr
R. Nikandish
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] Jundi-Shapur University of Technology,Department of Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
Krasner (; , ; )-hyperrings; -ary ; -absorbing hyperideals; -ary prime hyperideals; -ary 2-absorbing hyperideals; 16Y99; 20N20;
D O I
暂无
中图分类号
学科分类号
摘要
Let (R, f, g) be a commutative Krasner (m, n)-hyperring with the scalar identity 1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1_R$$\end{document} and k(<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<n$$\end{document}) be a positive integer. In this paper, the concept of n-ary k-absorbing hyperideal of R, as a generalization of n-ary prime hyperideal, is introduced and some related properties are investigated. A proper hyperideal I of R is called n-ary k-absorbing if whenever g(x1n)∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x_1^n) \in I$$\end{document} for x1n∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1^n \in R$$\end{document}, then there are k of the xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}’s whose g-product is in I. It is proved that the radical of an n-ary k-absorbing hyperideal I is an n-ary k-absorbing hyperideal and g(x(k),1R(n-k))∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x^{(k)}, 1_R^{(n-k)}) \in I$$\end{document} for each x∈I(m,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \sqrt{I}^{(m,n)}$$\end{document}. Among other things, we show that n-ary k-absorbing hyperideal has at most k minimal n-ary prime hyperideals. Finally, the notion of the n-ary hyperideal quotient Ix\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_x$$\end{document}, where x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}, is introduced and studied.
引用
收藏
相关论文
共 50 条
  • [31] A NOTE ON WEAKLY PRIME HYPERIDEALS AND (1, n) HYPERIDEALS ON MULTIPLICATIVE HYPERRINGS
    Ay, Elif Ozel
    Yesilot, Gursel
    THERMAL SCIENCE, 2022, 26 : S657 - S663
  • [32] N-ARY POLYGROUPS
    Ghadiri, M.
    Waphare, B. N.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2009, 33 (A2): : 145 - 158
  • [33] Interval-valued fuzzy n-ary subhypergroups of n-ary hypergroups
    Davvaz, B.
    Kazanci, Osman
    Yamak, S.
    NEURAL COMPUTING & APPLICATIONS, 2009, 18 (08): : 903 - 911
  • [34] N-ARY ALGEBRAS
    CARLSSON, R
    NAGOYA MATHEMATICAL JOURNAL, 1980, 78 (MAY) : 45 - 56
  • [35] Fuzzy join n-ary spaces and fuzzy canonical n-ary hypergroups
    Leoreanu-Fotea, Violeta
    FUZZY SETS AND SYSTEMS, 2010, 161 (24) : 3166 - 3173
  • [36] Augmented n-ary maps and their applications to graded n-ary algebraic structures
    Calderon-Martin, Antonio J.
    Navarro-Izquierdo, Francisco J.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [37] Augmented n-ary maps and their applications to graded n-ary algebraic structures
    Antonio J Calderon-Martin
    Francisco J Navarro-Izquierdo
    Proceedings - Mathematical Sciences, 132
  • [38] Interval-valued fuzzy n-ary subhypergroups of n-ary hypergroups
    B. Davvaz
    Osman Kazancı
    S. Yamak
    Neural Computing and Applications, 2009, 18 : 903 - 911
  • [39] n-ARY Hv-MODULES WITH EXTERNAL n-ARY P-HYPEROPERATION
    Davvaz, B.
    Vougiouklis, T.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (03): : 141 - 150
  • [40] (n + 1)-Ary derivations of simple n-ary algebras
    I. B. Kaygorodov
    Algebra and Logic, 2011, 50 : 470 - 471