n-Ary k-absorbing hyperideals in krasner (m, n)-hyperrings

被引:0
|
作者
A. Yassine
M. J. Nikmehr
R. Nikandish
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] Jundi-Shapur University of Technology,Department of Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
Krasner (; , ; )-hyperrings; -ary ; -absorbing hyperideals; -ary prime hyperideals; -ary 2-absorbing hyperideals; 16Y99; 20N20;
D O I
暂无
中图分类号
学科分类号
摘要
Let (R, f, g) be a commutative Krasner (m, n)-hyperring with the scalar identity 1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1_R$$\end{document} and k(<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<n$$\end{document}) be a positive integer. In this paper, the concept of n-ary k-absorbing hyperideal of R, as a generalization of n-ary prime hyperideal, is introduced and some related properties are investigated. A proper hyperideal I of R is called n-ary k-absorbing if whenever g(x1n)∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x_1^n) \in I$$\end{document} for x1n∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1^n \in R$$\end{document}, then there are k of the xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}’s whose g-product is in I. It is proved that the radical of an n-ary k-absorbing hyperideal I is an n-ary k-absorbing hyperideal and g(x(k),1R(n-k))∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x^{(k)}, 1_R^{(n-k)}) \in I$$\end{document} for each x∈I(m,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \sqrt{I}^{(m,n)}$$\end{document}. Among other things, we show that n-ary k-absorbing hyperideal has at most k minimal n-ary prime hyperideals. Finally, the notion of the n-ary hyperideal quotient Ix\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_x$$\end{document}, where x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}, is introduced and studied.
引用
收藏
相关论文
共 50 条
  • [21] On n-ary ring congruences of n-ary semirings
    Ayutthaya, Pakorn Palakawong na
    Pibaljommee, Bundit
    AIMS MATHEMATICS, 2022, 7 (10): : 18553 - 18564
  • [22] n-ARY HYPERGROUPS ASSOCIATED WITH n-ARY RELATIONS
    Anvariyeh, Seid Mohammad
    Momeni, Somayyeh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (02) : 507 - 524
  • [23] A Note on n-Hyperideals of Hyperrings
    Ugurlu, E. Aslankarayigit
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (03) : 311 - 320
  • [24] n-ary comodules over n-ary (co) algebras
    Zekovic, B.
    ALGEBRA & DISCRETE MATHEMATICS, 2008, (04): : 80 - 89
  • [25] J-hyperideals and their expansions in a Krasner (m, n)-hyp erring
    Anbarloei, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (01): : 171 - 184
  • [26] NEW TYPES OF FUZZY n-ARY SUBHYPERGROUPS OF AN n-ARY HYPERGROUP
    Yin, Y.
    Zhan, J.
    Davvaz, B.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2012, 9 (05): : 105 - 124
  • [27] Generalized fuzzy n-ary subhypergroups of a commutative n-ary hypergroup
    Yin, Yunqiang
    Zhan, Jianming
    Huang, Xiaokun
    MATHEMATICA SLOVACA, 2012, 62 (02) : 201 - 230
  • [28] Combinatorial aspects of n-ary polygroups and n-ary color schemes
    Anvariyeh, S. M.
    Mirvakili, S.
    Davvaz, B.
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 207 - 216
  • [29] N-ary hypergroups
    Davvaz, B.
    Vougiouklis, T.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2006, 30 (A2): : 165 - +
  • [30] A NOTE ON WEAKLY PRIME HYPERIDEALS AND (1, n) HYPERIDEALS ON MULTIPLICATIVE HYPERRINGS
    Ay, Elif Ozel
    Yesilot, Gursel
    THERMAL SCIENCE, 2022, 26 (SpecialIssue2): : S657 - S663