n-Ary k-absorbing hyperideals in krasner (m, n)-hyperrings

被引:0
|
作者
A. Yassine
M. J. Nikmehr
R. Nikandish
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] Jundi-Shapur University of Technology,Department of Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
Krasner (; , ; )-hyperrings; -ary ; -absorbing hyperideals; -ary prime hyperideals; -ary 2-absorbing hyperideals; 16Y99; 20N20;
D O I
暂无
中图分类号
学科分类号
摘要
Let (R, f, g) be a commutative Krasner (m, n)-hyperring with the scalar identity 1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1_R$$\end{document} and k(<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<n$$\end{document}) be a positive integer. In this paper, the concept of n-ary k-absorbing hyperideal of R, as a generalization of n-ary prime hyperideal, is introduced and some related properties are investigated. A proper hyperideal I of R is called n-ary k-absorbing if whenever g(x1n)∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x_1^n) \in I$$\end{document} for x1n∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1^n \in R$$\end{document}, then there are k of the xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}’s whose g-product is in I. It is proved that the radical of an n-ary k-absorbing hyperideal I is an n-ary k-absorbing hyperideal and g(x(k),1R(n-k))∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x^{(k)}, 1_R^{(n-k)}) \in I$$\end{document} for each x∈I(m,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \sqrt{I}^{(m,n)}$$\end{document}. Among other things, we show that n-ary k-absorbing hyperideal has at most k minimal n-ary prime hyperideals. Finally, the notion of the n-ary hyperideal quotient Ix\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_x$$\end{document}, where x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}, is introduced and studied.
引用
收藏
相关论文
共 50 条
  • [1] n-Ary k-absorbing hyperideals in krasner (m, n)-hyperrings
    Yassine, A.
    Nikmehr, M. J.
    Nikandish, R.
    AFRIKA MATEMATIKA, 2022, 33 (01)
  • [2] n-ARY 2-ABSORBING AND 2-ABSORBING PRIMARY HYPERIDEALS IN KRASNER (m, n)-HYPERRINGS
    Anbarloei, M.
    MATEMATICKI VESNIK, 2019, 71 (03): : 250 - 262
  • [3] ON (k, n)-ABSORBING HYPERIDEALS IN KRASNER (m, n)-HYPERRINGS
    Hila, Kostaq
    Naka, Krisanthi
    Davvaz, Bijan
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (03): : 1035 - 1046
  • [6] A study on a generalization of the n-ary prime hyperideals in a Krasner (m, n)-hyperring
    M. Anbarloei
    Afrika Matematika, 2021, 32 : 1021 - 1032
  • [7] Normal hyperideals in Krasner (m, n)-hyperrings
    Norouzi, Morteza
    Ameri, Reza
    Leoreanu-Fotea, Violeta
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 197 - 211
  • [8] Prime and primary hyperideals in Krasner (m, n)-hyperrings
    Ameri, R.
    Norouzi, M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 379 - 390
  • [9] Weakly (k, n)-absorbing (primary) hyperideals of a Krasner (m, n)-hyperring
    Davvaz, Bijan
    Ulucak, Gulsen
    Tekir, Unsal
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (05): : 1229 - 1238
  • [10] Canonical (m, n)-Ary Hypermodules over Krasner (m, n)-Ary Hyperrings
    Anvariyeh, S. M.
    Mirvakili, S.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2012, 7 (02): : 17 - 34