Asymptotic Properties of Bernstein–Durrmeyer Operators

被引:0
|
作者
Xiao-Wei Xu
Xiao-Ming Zeng
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Results in Mathematics | 2016年 / 69卷
关键词
Bernstein–Durrmeyer operators; Szász–Durrmeyer operator; Operator semigroups; Rates of convergence; Asymptotic expansion; 30E15;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that Szász–Durrmeyer operator is the limit, in an appropriate sense, of Bernstein–Durrmeyer operators. In this paper, we adopt a new technique that comes from the representation of operator semigroups to study the approximation issue as mentioned above. We provide some new results on approximating Szász–Durrmeyer operator by Bernstein–Durrmeyer operators. Our results improve the corresponding results of Adell and De La Cal (Comput Math Appl 30:1–14, 1995).
引用
收藏
页码:345 / 357
页数:12
相关论文
共 50 条
  • [31] Approximation by Modified Durrmeyer-Bernstein Operators
    Chen Wenzhong(Department of Mathematics
    数学研究与评论, 1989, (01) : 40 - 39
  • [32] (p, q)-Genuine Bernstein Durrmeyer operators
    Gupta, Vijay
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2016, 9 (03): : 399 - 409
  • [33] BERNSTEIN DURRMEYER OPERATORS BASED ON TWO PARAMETERS
    Gupta, Vijay
    Aral, Ali
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (01): : 79 - 95
  • [34] On genuine q-Bernstein-Durrmeyer operators
    Mahmudov, Nazim I.
    Sabancigil, Pembe
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (3-4): : 465 - 479
  • [35] Bezier-Bernstein-Durrmeyer type operators
    Kajla, Arun
    Acar, Tuncer
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [36] Generalized Bernstein–Durrmeyer operators of blending type
    Arun Kajla
    Meenu Goyal
    Afrika Matematika, 2019, 30 : 1103 - 1118
  • [37] The Genuine Bernstein-Durrmeyer Operators Revisited
    Gonska, Heiner
    Kacso, Daniela
    Rasa, Ioan
    RESULTS IN MATHEMATICS, 2012, 62 (3-4) : 295 - 310
  • [38] Bézier–Bernstein–Durrmeyer type operators
    Arun Kajla
    Tuncer Acar
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [39] A Class of Modified Bernstein-Durrmeyer Operators
    Zhao, Jianwei
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 208 - 217
  • [40] Modified α-Bernstein-Durrmeyer-Type Operators
    Agrawal, P. N.
    Kajla, Arun
    Singh, Sompal
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2049 - 2061