Asymptotic Properties of Bernstein–Durrmeyer Operators

被引:0
|
作者
Xiao-Wei Xu
Xiao-Ming Zeng
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Results in Mathematics | 2016年 / 69卷
关键词
Bernstein–Durrmeyer operators; Szász–Durrmeyer operator; Operator semigroups; Rates of convergence; Asymptotic expansion; 30E15;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that Szász–Durrmeyer operator is the limit, in an appropriate sense, of Bernstein–Durrmeyer operators. In this paper, we adopt a new technique that comes from the representation of operator semigroups to study the approximation issue as mentioned above. We provide some new results on approximating Szász–Durrmeyer operator by Bernstein–Durrmeyer operators. Our results improve the corresponding results of Adell and De La Cal (Comput Math Appl 30:1–14, 1995).
引用
收藏
页码:345 / 357
页数:12
相关论文
共 50 条
  • [41] Genuine modified Bernstein-Durrmeyer operators
    Mohiuddine, Syed Abdul
    Acar, Tuncer
    Alghamdi, Mohammed A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [42] Modified Bernstein-Durrmeyer Type Operators
    Kajla, Arun
    Miclaus, Dan
    MATHEMATICS, 2022, 10 (11)
  • [43] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [44] Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators
    Acu, Ana-Maria
    Muraru, Carmen Violeta
    Sofonea, Daniel Florin
    Radu, Voichita Adriana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) : 5636 - 5650
  • [45] Asymptotic Expansions for Bernstein-Durrmeyer-Chlodovsky Polynomials
    Abel, Ulrich
    Karsli, Harun
    RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [46] Genuine q-Stancu-Bernstein-Durrmeyer Operators
    Sabancigil, Pembe
    SYMMETRY-BASEL, 2023, 15 (02):
  • [47] Simultaneous approximation on generalized Bernstein-Durrmeyer operators
    Deo N.
    Bhardwaj N.
    Singh S.P.
    Afrika Matematika, 2013, 24 (1) : 77 - 82
  • [48] Generalized Bernstein-Durrmeyer operators of blending type
    Kajla, Arun
    Goyal, Meenu
    AFRIKA MATEMATIKA, 2019, 30 (7-8) : 1103 - 1118
  • [49] The Genuine Bernstein–Durrmeyer Operators and Quasi-Interpolants
    Margareta Heilmann
    Martin Wagner
    Results in Mathematics, 2012, 62 : 319 - 335
  • [50] APPROXIMATION BY A CLASS OF AIODIFIED BERNSTEIN-DURRMEYER OPERATORS
    Bingzheng Li Zhejiang University
    Approximation Theory and Its Applications, 1994, (03) : 32 - 44