Symmetry for a general class of overdetermined elliptic problems

被引:0
|
作者
F. Brock
机构
[1] University of Rostock,Department of Mathematics
关键词
Degenerate elliptic equation; Overdetermined boundary value problem; Symmetry of the solution; Continuous rearrangement; 28D10; 35B05; 35B50; 35J25; 35J60; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} a bounded domain in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} ^N }$$\end{document}, and let u∈C1(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\in C^1 (\overline{\Omega})}$$\end{document} a weak solution of the following overdetermined BVP: -∇(g(|∇u|)|∇u|-1∇u)=f(|x|,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\nabla (g(|\nabla u|)|\nabla u|^{-1} \nabla u)=f(|x|,u)}$$\end{document}, u>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ u > 0 }$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }$$\end{document} and u=0,|∇u(x)|=λ(|x|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u=0, \ |\nabla u(x)| =\lambda (|x|)}$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Omega }$$\end{document}, where g∈C([0,+∞)∩C1((0,+∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in C([0,+\infty )\cap C^1 ((0,+\infty ) ) }$$\end{document} with g(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g(0)=0}$$\end{document}, g′(t)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g'(t) > 0}$$\end{document} for t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t > 0}$$\end{document}, f∈C([0,+∞)×[0,+∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in C([0,+\infty ) \times [0, +\infty ) )}$$\end{document}, f is nonincreasing in |x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|x|}$$\end{document}, λ∈C([0,+∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in C([0, +\infty )) }$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }$$\end{document} is positive and nondecreasing. We show that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }$$\end{document} is a ball and u satisfies some “local” kind of symmetry. The proof is based on the method of continuous Steiner symmetrization.
引用
收藏
相关论文
共 50 条
  • [21] Geometry and topology of some overdetermined elliptic problems
    Ros, Antonio
    Sicbaldi, Pieralberto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (05) : 951 - 977
  • [22] A Rigidity Result for Overdetermined Elliptic Problems in the Plane
    Ros, Antonio
    Ruiz, David
    Sicbaldi, Pieralberto
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (07) : 1223 - 1252
  • [23] Partially and globally overdetermined problems of elliptic type
    Farina, Alberto
    Valdinoci, Enrico
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (01) : 27 - 45
  • [24] ON PARTIALLY AND GLOBALLY OVERDETERMINED PROBLEMS OF ELLIPTIC TYPE
    Farina, Alberto
    Valdinoci, Enrico
    AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (06) : 1699 - 1726
  • [25] SYMMETRY AND OVERDETERMINED BOUNDARY-VALUE-PROBLEMS
    MOLZON, R
    FORUM MATHEMATICUM, 1991, 3 (02) : 143 - 156
  • [26] SYMMETRY RESULT FOR SOME OVERDETERMINED VALUE PROBLEMS
    Barkatou, Mohammed
    Khatmi, Samira
    ANZIAM JOURNAL, 2008, 49 (04): : 479 - 494
  • [27] Symmetry in Multi-Phase Overdetermined Problems
    Babaoglu, Ceni
    Shahgholian, Henrik
    JOURNAL OF CONVEX ANALYSIS, 2011, 18 (04) : 1013 - 1024
  • [28] A Note on Symmetry of Solutions for a Class of Singular Semilinear Elliptic Problems
    Trombetta, Alessandro
    ADVANCED NONLINEAR STUDIES, 2016, 16 (03) : 499 - 507
  • [29] VARYING DOMAINS IN A GENERAL CLASS OF SUBLINEAR ELLIPTIC PROBLEMS
    Cano-Casanova, Santiago
    Lopez-Gomez, Julian
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [30] PARTIALLY OVERDETERMINED AND SUB-DEFINITE ELLIPTIC PROBLEMS
    KREIN, SG
    LVIN, SY
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1988, (10): : 15 - 23