A Rigidity Result for Overdetermined Elliptic Problems in the Plane

被引:29
|
作者
Ros, Antonio [1 ]
Ruiz, David [2 ]
Sicbaldi, Pieralberto [1 ,3 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva, E-18071 Granada, Spain
[2] Univ Granada, Dept Anal Matemat, Campus Fuentenueva, E-18071 Granada, Spain
[3] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, F-13453 Marseille, France
关键词
BOUNDARY-VALUE-PROBLEMS; RADIAL SYMMETRY; EQUATIONS; MONOTONICITY; EXISTENCE;
D O I
10.1002/cpa.21696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:[0,+) be a (locally) Lipschitz function and Omega subset of R-2 a C-1,C-alpha domain whose boundary is unbounded and connected. If there exists a positive bounded solution to the overdetermined elliptic problem {Delta u + f(u) = 0 in Omega, u = 0 on partial derivative Omega, partial derivative u/partial derivative(nu) over bar = 1 on partial derivative Omega, we prove that Omega is a half-plane. In particular, we obtain a partial answer to a question raised by H. Berestycki, L. Caffarelli, and L. Nirenberg in 1997.(c) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1223 / 1252
页数:30
相关论文
共 50 条