Symmetry for a general class of overdetermined elliptic problems

被引:0
|
作者
F. Brock
机构
[1] University of Rostock,Department of Mathematics
关键词
Degenerate elliptic equation; Overdetermined boundary value problem; Symmetry of the solution; Continuous rearrangement; 28D10; 35B05; 35B50; 35J25; 35J60; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} a bounded domain in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} ^N }$$\end{document}, and let u∈C1(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\in C^1 (\overline{\Omega})}$$\end{document} a weak solution of the following overdetermined BVP: -∇(g(|∇u|)|∇u|-1∇u)=f(|x|,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\nabla (g(|\nabla u|)|\nabla u|^{-1} \nabla u)=f(|x|,u)}$$\end{document}, u>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ u > 0 }$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }$$\end{document} and u=0,|∇u(x)|=λ(|x|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u=0, \ |\nabla u(x)| =\lambda (|x|)}$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Omega }$$\end{document}, where g∈C([0,+∞)∩C1((0,+∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in C([0,+\infty )\cap C^1 ((0,+\infty ) ) }$$\end{document} with g(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g(0)=0}$$\end{document}, g′(t)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g'(t) > 0}$$\end{document} for t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t > 0}$$\end{document}, f∈C([0,+∞)×[0,+∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in C([0,+\infty ) \times [0, +\infty ) )}$$\end{document}, f is nonincreasing in |x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|x|}$$\end{document}, λ∈C([0,+∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in C([0, +\infty )) }$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }$$\end{document} is positive and nondecreasing. We show that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }$$\end{document} is a ball and u satisfies some “local” kind of symmetry. The proof is based on the method of continuous Steiner symmetrization.
引用
收藏
相关论文
共 50 条
  • [31] Overdetermined elliptic problems in nontrivial contractible domains of the sphere
    Ruiz, David
    Sicbaldi, Pieralberto
    Wu, Jing
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 180 : 151 - 187
  • [32] Wulff shape characterizations in overdetermined anisotropic elliptic problems
    Bianchini, Chiara
    Ciraolo, Giulio
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (05) : 790 - 820
  • [33] Solutions to overdetermined elliptic problems in nontrivial exterior domains
    Ros, Antonio
    Ruiz, David
    Sicbaldi, Pieralberto
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (01) : 253 - 281
  • [34] Radial symmetry and partially overdetermined problems in a convex cone
    Lee, Jihye
    Seo, Keomkyo
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (03) : 1204 - 1224
  • [35] Symmetry and nonsymmetry in some overdetermined boundary value problems
    Alessandrini, G
    Magnanini, R
    REACTION DIFFUSION SYSTEMS, 1998, 194 : 1 - 12
  • [36] On a class of elliptic problems in R2:: symmetry and uniqueness results
    Prajapat, J
    Tarantello, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 : 967 - 985
  • [37] Overdetermined boundary value problems with strongly nonlinear elliptic PDE
    Lv, Boqiang
    Li, Fengquan
    Zou, Weilin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (10) : 1 - 17
  • [38] Radial symmetry of overdetermined boundary value problems in exterior domains
    Aftalion, A
    Busca, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06): : 633 - 638
  • [39] ON AN OVERDETERMINED ELLIPTIC PROBLEM
    Hauswirth, Laurent
    Helein, Frederic
    Pacard, Frank
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 250 (02) : 319 - 334
  • [40] Overdetermined elliptic systems
    Krupchyk, Katsiaryna
    Seiler, Werner M.
    Tuomela, Jukka
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (03) : 309 - 351