Dynamics of Maxwell’s pendulum

被引:0
|
作者
A. P. Markeev
机构
[1] Russian Academy of Sciences,Ishlinsky Institute for Problems in Mechanics
[2] Moscow State Institute of Aviation,undefined
来源
Doklady Physics | 2017年 / 62卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The stability of motion of Maxwell’s pendulum is investigated in a uniform gravity field. By means of several canonic transforms of the equations of pendulum motion and the method of the surfaces of Poincaré sections, the problem is reduced to investigation of the immobile-point stability retaining the area of mapping of the plane into itself. In the space of dimensionless parameters, the stability and instability regions are singled out.
引用
收藏
页码:228 / 232
页数:4
相关论文
共 50 条
  • [41] Nonlinear dynamics of a rotating double pendulum
    Maiti, Soumyabrata
    Roy, Jyotirmoy
    Mallik, Asok K.
    Bhattacharjee, Jayanta K.
    PHYSICS LETTERS A, 2016, 380 (03) : 408 - 412
  • [42] On the dynamics of the angular momentum of a quantum pendulum
    Ugulava, A.
    Toklikishvili, Z.
    Chkhaidze, S.
    CHAOS, 2020, 30 (06)
  • [43] On Dynamics of an Aerodynamic Pendulum with Multiple Links
    Selyutskiy, Yury
    Holub, Andrei
    Lin, Ching-Huei
    PERSPECTIVES IN DYNAMICAL SYSTEMS II-NUMERICAL AND ANALYTICAL APPROACHES, DSTA 2021, 2024, 454 : 563 - 570
  • [44] Complex Dynamics in an Ideal Commutable Pendulum
    Nosov, Valery R.
    Dominguez, Hector
    Ortega Herrera, Jose A.
    2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2008), 2008, : 289 - 294
  • [45] Dynamics of a parametrically excited simple pendulum
    Depetri, Gabriela I.
    Pereira, Felipe A. C.
    Marin, Boris
    Baptista, Murilo S.
    Sartorelli, J. C.
    CHAOS, 2018, 28 (03)
  • [46] Dynamics and Control of a Chain Pendulum on a Cart
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2502 - 2508
  • [47] Geometrical approach to the swinging pendulum dynamics
    Awrejcewicz, J.
    Sendkowski, D.
    Kazmierczak, M.
    COMPUTERS & STRUCTURES, 2006, 84 (24-25) : 1577 - 1583
  • [48] Instability dynamics of a horizontally shaken pendulum
    Xu, Yan
    Alexander, Tristram J.
    Sidhu, Harvinder S.
    ANZIAM JOURNAL, 2011, 53 : C325 - C339
  • [49] DYNAMICS OF A PARAMETRICALLY EXCITED DOUBLE PENDULUM
    SKELDON, AC
    PHYSICA D, 1994, 75 (04): : 541 - 558
  • [50] On the dynamics of a pendulum mounted on a movable platform
    Markeev, A. P.
    Sukhoruchkin, D. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2018, 28 (02): : 240 - 251