Dynamics of Maxwell’s pendulum

被引:0
|
作者
A. P. Markeev
机构
[1] Russian Academy of Sciences,Ishlinsky Institute for Problems in Mechanics
[2] Moscow State Institute of Aviation,undefined
来源
Doklady Physics | 2017年 / 62卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The stability of motion of Maxwell’s pendulum is investigated in a uniform gravity field. By means of several canonic transforms of the equations of pendulum motion and the method of the surfaces of Poincaré sections, the problem is reduced to investigation of the immobile-point stability retaining the area of mapping of the plane into itself. In the space of dimensionless parameters, the stability and instability regions are singled out.
引用
收藏
页码:228 / 232
页数:4
相关论文
共 50 条
  • [31] The dynamics of an omnidirectional pendulum harvester
    Sommermann, Philipp
    Cartmell, Matthew P.
    NONLINEAR DYNAMICS, 2021, 104 (03) : 1889 - 1900
  • [32] Dynamics of a Submerged Compound Pendulum
    Das, Anupam
    Konar, Tanmoy
    Ghosh, Aparna
    Maity, Damodar
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (05)
  • [33] Pendulum dynamics in an amusement park
    Gurri, Pol
    Amat, David
    Espar, Joan
    Puig, Jordi
    Jimenez, Gerard
    Sendra, Lluc
    Pardo, Luis C.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (03)
  • [34] Experiments on Maxwell's fish-eye dynamics in elastic plates
    Lefebvre, Gautier
    Dubois, Marc
    Beauvais, Romain
    Achaoui, Younes
    Ing, Ros Kiri
    Guenneau, Sebastien
    Sebbah, Patrick
    APPLIED PHYSICS LETTERS, 2015, 106 (02)
  • [36] Maxwell Boltzmann gas dynamics
    Kliegel, J.R.
    Proceedings of the International Symposium on Rarefied Gas Dynamics, 1990,
  • [37] Maxwell-dilaton dynamics
    Liebling, Steven L.
    PHYSICAL REVIEW D, 2019, 100 (10)
  • [38] Complex dynamics and chaos in commutable pendulum
    Nosov, V. R.
    Dominguez, H.
    Ortega-Herrera, J. A.
    Meda-Campana, J. A.
    REVISTA MEXICANA DE FISICA, 2012, 58 (01) : 6 - 12
  • [39] Dynamics of damped oscillations: physical pendulum
    Quiroga, G. D.
    Ospina-Henao, P. A.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (06)
  • [40] ANALYSIS OF DYNAMICS IN A PARAMETRICALLY DAMPED PENDULUM
    XIE, FG
    ZHENG, WM
    PHYSICAL REVIEW E, 1994, 49 (03): : 1888 - 1894