Dynamics of Maxwell’s pendulum

被引:0
|
作者
A. P. Markeev
机构
[1] Russian Academy of Sciences,Ishlinsky Institute for Problems in Mechanics
[2] Moscow State Institute of Aviation,undefined
来源
Doklady Physics | 2017年 / 62卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The stability of motion of Maxwell’s pendulum is investigated in a uniform gravity field. By means of several canonic transforms of the equations of pendulum motion and the method of the surfaces of Poincaré sections, the problem is reduced to investigation of the immobile-point stability retaining the area of mapping of the plane into itself. In the space of dimensionless parameters, the stability and instability regions are singled out.
引用
收藏
页码:228 / 232
页数:4
相关论文
共 50 条
  • [21] On the dynamics and integrability of the Ziegler pendulum
    Polekhin, Ivan Yu.
    NONLINEAR DYNAMICS, 2024, 112 (09) : 6847 - 6858
  • [22] On the dynamics and integrability of the Ziegler pendulum
    Ivan Yu. Polekhin
    Nonlinear Dynamics, 2024, 112 : 6847 - 6858
  • [23] Dynamics of an impacting spherical pendulum
    Ertas, A.
    Garza, S.
    Lecture Notes in Applied and Computational Mechanics, 2009, 44
  • [24] Dynamics of an Impacting Spherical Pendulum
    Ertas, A.
    Garza, S.
    VIBRO-IMPACT DYNAMICS OF OCEAN SYSTEMS AND RELATED PROBLEMS, 2009, 44 : 91 - 91
  • [25] Dynamics of a Pendulum in a Rarefied Flow
    Davydov, Alexey
    Plakhov, Alexander
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (01): : 134 - 142
  • [26] ON THE DYNAMICS OF A CONSERVATIVE ELASTIC PENDULUM
    GANS, RF
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (02): : 425 - 430
  • [27] A Study of the Dynamics of Nonlinear Pendulum
    Segovia-Chaves, Francis
    Dussan Penagos, Anyery
    REVISTA CIENTIFICA, 2016, 1 (24):
  • [28] Dynamics of the nearly parametric pendulum
    Horton, B.
    Sieber, J.
    Thompson, J. M. T.
    Wiercigroch, M.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (02) : 436 - 442
  • [29] CHAOTIC DYNAMICS OF A WHIRLING PENDULUM
    SHAW, SW
    WIGGINS, S
    PHYSICA D-NONLINEAR PHENOMENA, 1988, 31 (02) : 190 - 211
  • [30] The dynamics of an omnidirectional pendulum harvester
    Philipp Sommermann
    Matthew P. Cartmell
    Nonlinear Dynamics, 2021, 104 : 1889 - 1900