Dynamics of Maxwell’s pendulum

被引:0
|
作者
A. P. Markeev
机构
[1] Russian Academy of Sciences,Ishlinsky Institute for Problems in Mechanics
[2] Moscow State Institute of Aviation,undefined
来源
Doklady Physics | 2017年 / 62卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The stability of motion of Maxwell’s pendulum is investigated in a uniform gravity field. By means of several canonic transforms of the equations of pendulum motion and the method of the surfaces of Poincaré sections, the problem is reduced to investigation of the immobile-point stability retaining the area of mapping of the plane into itself. In the space of dimensionless parameters, the stability and instability regions are singled out.
引用
收藏
页码:228 / 232
页数:4
相关论文
共 50 条
  • [1] Dynamics of Maxwell's pendulum
    Markeev, A. P.
    DOKLADY PHYSICS, 2017, 62 (04) : 228 - 232
  • [2] Instability of the Maxwell's Pendulum Motion
    Rozenblat, G. M.
    MECHANICS OF SOLIDS, 2018, 53 (05) : 527 - 534
  • [3] Instability of the Maxwell’s Pendulum Motion
    G. M. Rozenblat
    Mechanics of Solids, 2018, 53 : 527 - 534
  • [5] On the Dynamics with s Collisions of a Spatial Physical Pendulum
    Dragna, Ionut-Bogdan
    Pandrea, Nicolae
    Stanescu, Nicolae-Doru
    ROMANIAN JOURNAL OF ACOUSTICS AND VIBRATION, 2019, 16 (02): : 158 - 165
  • [6] Maxwell's equations and atomic dynamics.
    Bramley, A
    JOURNAL OF THE FRANKLIN INSTITUTE, 1926, 202 : 775 - 808
  • [7] Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle
    Mao, Weikang
    Li, Xiaodong
    Chen, Enliang
    EARTHQUAKES AND STRUCTURES, 2024, 27 (02) : 143 - 154
  • [8] Dynamics of accelerating Bessel solutions of Maxwell's equations
    Aleahmad, Parinaz
    Moya Cessa, Hector
    Kaminer, Ido
    Segev, Mordechai
    Christodoulides, Demetrios N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (10) : 2047 - 2052
  • [9] On the Dynamics of the Furuta Pendulum
    Cazzolato, Benjamin Seth
    Prime, Zebb
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2011, 2011
  • [10] Fractional kinetics: from pseudochaotic dynamics to Maxwell's Demon
    Zaslavsky, GM
    Edelman, MA
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 193 (1-4) : 128 - 147