On the Domains of Bessel Operators

被引:0
|
作者
Jan Dereziński
Vladimir Georgescu
机构
[1] University of Warsaw,Department of Mathematical Methods in Physics, Faculty of Physics
[2] UMR 8088 CNRS,Laboratoire AGM
来源
Annales Henri Poincaré | 2021年 / 22卷
关键词
47E99; 81Q80;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger operator on the halfline with the potential (m2-14)1x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m^2-\frac{1}{4})\frac{1}{x^2}$$\end{document}, often called the Bessel operator. We assume that m is complex. We study the domains of various closed homogeneous realizations of the Bessel operator. In particular, we prove that the domain of its minimal realization for |Re(m)|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathrm{Re}(m)|<1$$\end{document} and of its unique closed realization for Re(m)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Re}(m)>1$$\end{document} coincide with the minimal second-order Sobolev space. On the other hand, if Re(m)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Re}(m)=1$$\end{document} the minimal second-order Sobolev space is a subspace of infinite codimension of the domain of the unique closed Bessel operator. The properties of Bessel operators are compared with the properties of the corresponding bilinear forms.
引用
收藏
页码:3291 / 3309
页数:18
相关论文
共 50 条
  • [31] Mapping properties of fundamental operators in harmonic analysis related to Bessel operators
    Betancor, Jorge J.
    Harboure, Eleonor
    Nowak, Adam
    Viviani, Beatriz
    STUDIA MATHEMATICA, 2010, 197 (02) : 101 - 140
  • [32] Bessel-Type Operators with an Inner Singularity
    Brown, B. Malcolm
    Langer, Heinz
    Langer, Matthias
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 75 (02) : 257 - 300
  • [33] Caldern-Zygmund operators in the Bessel setting
    Betancor, Jorge J.
    Castro, Alejandro J.
    Nowak, Adam
    MONATSHEFTE FUR MATHEMATIK, 2012, 167 (3-4): : 375 - 403
  • [34] OPERATORS, FRAMES AND CONVERGENCE OF SEQUENCES OF BESSEL SEQUENCES
    Dehghan, Mohammad Ali
    Mesbah, Mehdi
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (01): : 75 - 86
  • [35] ON DOMAIN PROPERTIES OF BESSEL-TYPE OPERATORS
    Gesztesy, Fritz
    Pang, Michael M. H.
    Stanfill, Jonathan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1911 - 1946
  • [36] LIOUVILLE THEOREMS FOR THE MULTIDIMENSIONAL FRACTIONAL BESSEL OPERATORS
    Galli, Vanesa
    Molina, Sandra
    Quintero, Alejandro
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (04): : 1099 - 1129
  • [37] A Liouville theorem for some Bessel generalized operators
    Galli, Vanesa
    Molina, Sandra
    Quintero, Alejandro
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (05) : 367 - 383
  • [38] New ring of a class of Bessel integral operators
    Assal, Miloud
    Zeyada, Nasr A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (08) : 611 - 619
  • [39] Calderón–Zygmund operators in the Bessel setting
    Jorge J. Betancor
    Alejandro J. Castro
    Adam Nowak
    Monatshefte für Mathematik, 2012, 167 : 375 - 403
  • [40] ON INTEGRAL OPERATORS WITH KERNELS INVOLVING BESSEL FUNCTIONS
    OKIKIOLU, GO
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 477 - &