Caldern-Zygmund operators in the Bessel setting

被引:23
|
作者
Betancor, Jorge J. [2 ]
Castro, Alejandro J. [2 ]
Nowak, Adam [1 ,3 ]
机构
[1] Polish Acad Sci, Inst Matemat, PL-00956 Warsaw, Poland
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Sta Cruz De Ten, Spain
[3] Wroclaw Univ Technol, Inst Matemat & Informatyki, PL-50370 Wroclaw, Poland
来源
MONATSHEFTE FUR MATHEMATIK | 2012年 / 167卷 / 3-4期
关键词
Bessel operator; Bessel semigroup; Maximal operator; Square function; Multiplier; Riesz transform; Calderon-Zygmund operator; HARDY-SPACES; RIESZ TRANSFORMS; LAGUERRE; EXPANSIONS;
D O I
10.1007/s00605-011-0348-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study several fundamental operators in harmonic analysis related to Bessel operators, including maximal operators related to heat and Poisson semigroups, Littlewood-Paley-Stein square functions, multipliers of Laplace transform type and Riesz transforms. We show that these are (vector-valued) Caldern-Zygmund operators in the sense of the associated space of homogeneous type, and hence their mapping properties follow from the general theory.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 50 条